In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were ...In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were presented. Two different polystyrene materials were utilized as deformable inclusions.Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wallmodel were monitored during the tests. The earth pressures and displacements of the retaining wallswith deformable inclusions were compared with those of the models without geofoam inclusions.Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall modelaffect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusioncharacteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures wasobserved. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wallmodel increased. On the other hand, dynamic load reduction efficiency of the deformable inclusionincreased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility ofthe deformable layer (the thickness and the elastic stiffness of the polystyrene material) played animportant role in the amount of load reduction. Dynamic earth pressure coefficients were compared withthose calculated with an analytical approach. Pressure coefficients calculated with this method werefound to be in good agreement with the results of the tests performed on the wall model having lowflexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at theend of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. Thegraphs presented within this paper regarding the dynamic earth pressure coefficients versus the wallflexibility and inclusion characteristics may serve for the seismic design of full-scale retaining walls withdeformable polystyrene inclusions. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Monitoring results for the period 2009-2014 by ten standard GPS stations allowed to determine the crustal movements of seismically active region in south-eastern Kazakhstan. Maps of movement velocity were made in geoc...Monitoring results for the period 2009-2014 by ten standard GPS stations allowed to determine the crustal movements of seismically active region in south-eastern Kazakhstan. Maps of movement velocity were made in geocentric coordinate system and in reference system of the Eurasian continent. GPS points displacements reflect the features of modern deformation processes that are notable in the high seismic activity region. The structure of the velocity field divergence qualitatively confirms major deformation in the sublatitudinal direction which is parallel to the main ridge of the northern Tianshan Mountain. The epicenters of earthquakes are in agreement with the border areas of compression -tension, as well as the allocated areas of multidirectional rotary motion. The conclusion is that GPS monitoring of the movements of the Earth's crust can be used to evaluate the territory's stress-strain state for the purpose of seismic zoning and seismic risk assessment.展开更多
The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the unia...The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the uniaxial compression tests. The results showed that the high temperature deformation behaviors were highly sensitive to strain rate and temperature, and the flow stress decreased with the increase of temperature, as well as with the decrease of strain rate. Additionally, the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass displayed smaller flow stress under the same condition. The flow behavior changed from Newtonian to non-Newtonian with increase of the strain rate, as well as the decrease of temperature, which could be explained by the transition state theory. We found that(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass had better flow behavior than the Cu_(43)Zr_(48)Al_9 bulk metallic glass in the supercooled liquid region. In addition, the processing maps of the two bulk metallic glasses were constructed considering the power dissipation efficiency. The optimum domain for thermal workability of the bulk metallic glass was located using the processing map, where the power dissipation efficiency was larger than 0.8. It was shown that the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass, which had larger area of optimum domain, had excellent thermoplastic forming.展开更多
In order to investigate the effect of extrusion on Mg-4Zn-1Y alloy, microstructure and mechanical properties were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron micros...In order to investigate the effect of extrusion on Mg-4Zn-1Y alloy, microstructure and mechanical properties were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), energy dispersive spectrum(EDS) and tensile testing.The results indicated that the microstructure was obviously refined by extrusion and dynamic recrystallization.The second phases were dynamic precipitated and distributed more dispersively through extrusion.W-Phases(Mg3Zn3Y2) were twisted and broken, while I-Phases(Mg3Zn6Y) were spheroidized by deformation.Twin bands were formed to achieve the large deformation and hinder the slip of dislocations effectively to improve tensile properties.The tensile strength and elongation of extruded Mg-4Zn-1Y alloy were 254.94 MPa and 17.9% respectively which were improved greatly compared with those of as-cast alloy.The strengthening mechanisms of the extruded alloy were mainly fine-grain strengthening and distortion strengthening.展开更多
文摘In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were presented. Two different polystyrene materials were utilized as deformable inclusions.Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wallmodel were monitored during the tests. The earth pressures and displacements of the retaining wallswith deformable inclusions were compared with those of the models without geofoam inclusions.Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall modelaffect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusioncharacteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures wasobserved. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wallmodel increased. On the other hand, dynamic load reduction efficiency of the deformable inclusionincreased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility ofthe deformable layer (the thickness and the elastic stiffness of the polystyrene material) played animportant role in the amount of load reduction. Dynamic earth pressure coefficients were compared withthose calculated with an analytical approach. Pressure coefficients calculated with this method werefound to be in good agreement with the results of the tests performed on the wall model having lowflexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at theend of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. Thegraphs presented within this paper regarding the dynamic earth pressure coefficients versus the wallflexibility and inclusion characteristics may serve for the seismic design of full-scale retaining walls withdeformable polystyrene inclusions. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金a part of the project "Development of evaluation methods of geomechanical condition of earth's crustin crisis territories using mathematic modeling and satellite technologies" under the Republican budget program 076 "Applied scientific researches in space activities"
文摘Monitoring results for the period 2009-2014 by ten standard GPS stations allowed to determine the crustal movements of seismically active region in south-eastern Kazakhstan. Maps of movement velocity were made in geocentric coordinate system and in reference system of the Eurasian continent. GPS points displacements reflect the features of modern deformation processes that are notable in the high seismic activity region. The structure of the velocity field divergence qualitatively confirms major deformation in the sublatitudinal direction which is parallel to the main ridge of the northern Tianshan Mountain. The epicenters of earthquakes are in agreement with the border areas of compression -tension, as well as the allocated areas of multidirectional rotary motion. The conclusion is that GPS monitoring of the movements of the Earth's crust can be used to evaluate the territory's stress-strain state for the purpose of seismic zoning and seismic risk assessment.
基金supported by the Education Department of Shaanxi Province(14JK1351)the Principal Fund of Xi’an Technological University(0852-302021407)
文摘The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the uniaxial compression tests. The results showed that the high temperature deformation behaviors were highly sensitive to strain rate and temperature, and the flow stress decreased with the increase of temperature, as well as with the decrease of strain rate. Additionally, the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass displayed smaller flow stress under the same condition. The flow behavior changed from Newtonian to non-Newtonian with increase of the strain rate, as well as the decrease of temperature, which could be explained by the transition state theory. We found that(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass had better flow behavior than the Cu_(43)Zr_(48)Al_9 bulk metallic glass in the supercooled liquid region. In addition, the processing maps of the two bulk metallic glasses were constructed considering the power dissipation efficiency. The optimum domain for thermal workability of the bulk metallic glass was located using the processing map, where the power dissipation efficiency was larger than 0.8. It was shown that the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass, which had larger area of optimum domain, had excellent thermoplastic forming.
基金Project supported by General Program of Liaoning Province Committee of Education(L2012035)Liaoning Province Science and Technology Plan(2013201018)Liaoning Province University Innovation Team Support Plan
文摘In order to investigate the effect of extrusion on Mg-4Zn-1Y alloy, microstructure and mechanical properties were analyzed by optical microscopy(OM), scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), energy dispersive spectrum(EDS) and tensile testing.The results indicated that the microstructure was obviously refined by extrusion and dynamic recrystallization.The second phases were dynamic precipitated and distributed more dispersively through extrusion.W-Phases(Mg3Zn3Y2) were twisted and broken, while I-Phases(Mg3Zn6Y) were spheroidized by deformation.Twin bands were formed to achieve the large deformation and hinder the slip of dislocations effectively to improve tensile properties.The tensile strength and elongation of extruded Mg-4Zn-1Y alloy were 254.94 MPa and 17.9% respectively which were improved greatly compared with those of as-cast alloy.The strengthening mechanisms of the extruded alloy were mainly fine-grain strengthening and distortion strengthening.