Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and rene...Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and renewable energy is also known. Calculated accumulated energy in Earth land from 1971 to 2018 corresponds to 40% of IPCC Global Energy Inventory and calculated Atmosphere temperature increase from 1971 to 2018 corresponds to 100% of actual measurements.展开更多
Geothermal heat pumps (GHPs) are an attractive proposition for renewable energy worldwide as it uses energy naturally stored in the earth. The Earth is a very resourceful form of energy, using the natural solar ener...Geothermal heat pumps (GHPs) are an attractive proposition for renewable energy worldwide as it uses energy naturally stored in the earth. The Earth is a very resourceful form of energy, using the natural solar energy collection and heat storage capabilities as an infinite heat source/heat sink at the base of permeable pavements, which can provide excellent temperature gradients for GHP's. Experimental rigs were setup up at The University of Edinbttrgh for a combined permeable pavement and GHP system. At the base of a pavement structure (approximately 1 meter) below the ground's surface, temperatures are constant of 10℃ in the U.K all year round. The GHP performance efficiency was analysed by the coefficient of performance (COP) in a heating cycle and the energy efficiency ratio (EER) in a cooling cycle. The mean COP and EER for both systems averaged between 2-4.5 and 3-5 respectively. The combined GHP and pavement structure operated at an optimum efficiency for both heating and cooling cycles and has shown to be unaffected by higher summer or lower winter temperatures. This hybrid system is an attractive renewable energy technology and has additional environmental benefits such as urban runoff reuse and recycling.展开更多
Today anthropogenic climate change is underway and predicted future global temperatures vary significantly. However, the drivers of current climate change and their links to Earth’s natural glacial cycle have yet to ...Today anthropogenic climate change is underway and predicted future global temperatures vary significantly. However, the drivers of current climate change and their links to Earth’s natural glacial cycle have yet to be fully resolved. Currently, many on a local level understand, and are exposed to, the heat energy generated by what’s referred to as the urban heat island effect (UHI), whereby natural flora with higher albedos </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> replaced by manmade urban areas with lower albedos. This heat effect is not constrained to these regions and all anthropogenic surfaces with lower albedos need to be studied and quantified as the accumulated additional heat energy (infrared energy) is trapped within Earth’s atmosphere and could affect the Earth on a planetary level. Deployed satellites have detected critical changes to Earth’s albedo to lower levels, however the cause and impact of these changes have yet to be fully understood and incorporated into Global Circulation models (GCMs). Here it’s shown that industrialization of anthropogenic landscape practices of the past century has displaced millions of square kilometres of naturally high albedo grasslands with lower albedo agricultural landscapes. Utilising a fundamental Energy Balance Model, (EBM) it’s demonstrated these specific changes have generated vast amounts of additional heat energy which is trapped by the atmosphere, transferred and stored within the oceans of the Earth as shown in <b></span></span></span><a href="file:///E:/360data/%E9%87%8D%E8%A6%81%E6%95%B0%E6%8D%AE/%E6%A1%8C%E9%9D%A2/%E7%A9%BA%E7%99%BD%E9%A1%B5.docx#F1"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">Figure 1</span></b></span></span></a><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"></b></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. The total additional heat energy accumulated over the preceding 110 years correlates to that required to warm the Earth to the levels seen to date, altering Earth’s overall energy budget. This energy will continue to accumulate and warm the Earth to a predicted 1.60 ± 0.20 Celsius by 2050 over 1910 levels. These findings are independent of anthropogenic Greenhouse Gas (GHG) additions and are further validated by predicting Earth’s temperature and albedo at the last glacial maxima, suggesting that an albedo cycle aligned to Gaia theory is the primary driver of Earth’s natural climate cycle.展开更多
The Earth’s climate is largely determined by its energy budget.Since the 1960s,satellite remote sensing has been used in estimating these energy budget components at both the top of the atmosphere(TOA)and the surface...The Earth’s climate is largely determined by its energy budget.Since the 1960s,satellite remote sensing has been used in estimating these energy budget components at both the top of the atmosphere(TOA)and the surface.Besides the broadband sensors that have been traditionally used for monitoring Earth’s Energy Budget(EEB),data from a variety of narrowband sensors aboard both polar-orbiting and geostationary satellites have also been extensively employed to estimate the EEB components.This paper provides a comprehensive review of the satellite missions,state-of-the art estimation algorithms and the satellite products,and also synthesizes current understanding of the EEB and spatiotemporal variations.The TOA components include total solar irradiance,reflected shortwave radiation/planetary albedo,outgoing longwave radiation,and energy imbalance.The surface components include incident solar radiation,shortwave albedo,shortwave net radiation,longwave downward and upwelling radiation,land and sea surface temperature,surface emissivity,all-wave net radiation,and sensible and latent heat fluxes.Some challenges,and outlook such as virtual constellation of different satellite sensors,temporal homogeneity tests of long time-series products,algorithms ensemble,and products intercomparison are also discussed.展开更多
Hourly outgoing longwave radiation (OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite (COMS) has been retrieved since June 2010.The COMS OLR retrieval algorithms are based o...Hourly outgoing longwave radiation (OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite (COMS) has been retrieved since June 2010.The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels.This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm (OLR12.0 using the 12.0 μm channel) and three multiple-channel algorithms (OLR10.8+12.0 using the 10.8 and 12.0 pm channels; OLR6.7+10.8 using the 6.7 and 10.8 μm channels; and OLRAll using the 6.7,10.8,and 12.0 μm channels).The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System (CERES) over the full COMS field of view [roughly (50°S-50°N,70°-170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5-7 W m-2,which indicates good agreement with CERES OLR over the vast domain.OLR6.7+10.8 and OLRAll have much smaller errors (~ 6 W m-2) than OLR12.0 and OLR10.8+12.0 (~ 8 W m-2).Moreover,the small errors of OLR6.7+10.8 and OLRAll are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration.These results indicate a noteworthy role of the 6.7 μm water vapor absorption channel in improving the accuracy of the OLRs.The dependence of the accuracy of COMS OLRs on various surface,atmospheric,and observational conditions is also discussed.展开更多
The combustion energy has been determined for the nine solid complexes of rare earth perchlorate with glycine and imidazole using a rotatingbomb calorimeter.The standard enthalpy of combustion,H0 -c,coor(s), and stan...The combustion energy has been determined for the nine solid complexes of rare earth perchlorate with glycine and imidazole using a rotatingbomb calorimeter.The standard enthalpy of combustion,H0 -c,coor(s), and standard enthalpy of formation,H0 -f,coor(s), for these complexes have been calculated. From the plot of standard enthalpy of formation versus atomic number of the elements in lanthanide series the tripartite effect regularity was observed and the unknown standard enthalpy of formation for similar complexes,Ce(Gly)4(Im)(ClO4)32H2O and Pm(Gly)4(Im)(ClO4)32H2O,can be estimated according to the figure.展开更多
The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveri...The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essen- tially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMT's sci- ence agenda fills all of space and time, from nearby comets and asteroids, to exo- planets, to the most distant galaxies, and all the way back to the very first sources of light in the universe. More than 150 astronomers from within the TMT partner- ship and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (HA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ), the University of California, the Association of Canadian Universities for Research in Astronomy (ACURA) and US associate partner, the Association of Universities for Research in Astronomy (AURA).展开更多
According to the latest report of Pike Research,the demand for rare earth in the new energy technology field will break the mark of 12,000 tons to reach 12,920 tons in 2017 from about 9,000 tons in 2011,indicating rap...According to the latest report of Pike Research,the demand for rare earth in the new energy technology field will break the mark of 12,000 tons to reach 12,920 tons in 2017 from about 9,000 tons in 2011,indicating rapid development of China’s rare earth hydrogen storage material industry.展开更多
The upconversion(UC) of the rare earth doped glass-ceramics has been extensively investigated due to their potential applications in many fields, such as color display, high density memories, optical data storage, s...The upconversion(UC) of the rare earth doped glass-ceramics has been extensively investigated due to their potential applications in many fields, such as color display, high density memories, optical data storage, sensor and energy solar cell, etc. Many series of them, especially the oxyfluorides glasses containing Ba2 LaF 7 nanocrystals were studied in this review work, due to the thermal and mechanical toughness, high optical transmittance from the ultraviolet to the infrared regions, and a low nonlinear refractive index compared to the other commercial laser glasses. Moreover, the energy transfer(ET) between the rare earth ions and transition metals plays an important role in the upconversion process. The cooperative ET has been researched very activly in UC glasses due to applications in the fields of solar cells, such as in the Er/Yb, Tm/Yb, Tb/Yb, Tb/Er/Yb and Tm/Er/Yb couples. The present article reviews on the recent progress made on:(i) upconversion materials with fluoride microcrystals in glasses and the mechanisms involved, including the UC in double and tri-dopant RE ions activated fluoride microcrystal, energy transfer process; and(ii) the effect of the metal Mn and nanoparticles of Au, Ag, Cu on the enhancement of UC emissions. Discussions have also been made on materials, material synthesis, the structural and emission properties of glass-ceramics. Additionally, the conversion efficiency is still a challenge for the spectra conversion materials and application; challenge and future advances have also been demonstrated.展开更多
To harness the rich solar energy resources in Xinjiang Region of Northwest China,this study tries to address the issue of lack of downward surface shortwave radiation(DSSR)observations and the need to improve the accu...To harness the rich solar energy resources in Xinjiang Region of Northwest China,this study tries to address the issue of lack of downward surface shortwave radiation(DSSR)observations and the need to improve the accuracy of satellite retrieval and numerical simulation of DSSR under varied sky and meteorological conditions.(1)A two-layer aerosol model specific to Xinjiang was developed to capture the vertical distributions of aerosols based on multiple data sources including lidar,GPS sounding,ground meteorological observations,and profiles from the ECMWF reanalysis version 5(ERA5)data.The results show that the ERA5/PBLH(planetary boundary layer height)and ERA5/ALH(aerosol layer height)could be used to establish the two-layer aerosol model and characterize the vertical distribution of aerosols in Xinjiang Region.(2)Using the Santa Barbara Discrete Atmospheric Radiative Transfer(SBDART)model,a localized inverse model of clear-sky DSSR was established.After parameter adjustment and using the optimal combination of input parameters for DSSR simulation together with the two-layer aerosol model,the model-simulated DSSR(DSSRSBD)under clear-sky conditions improved significantly compared to the initial results,with all fitting indices greatly improved.(3)In addition,the study demonstrated that the impact of the two-layer aerosol model on DSSR was more pronounced under dust conditions than clear-sky conditions.(4)Using the localized clear-sky DSSR inversion model and its required parameters,simulations were also conducted to capture the spatiotemporal distribution of DSSR under clear-sky conditions in Xinjiang from 2017 to 2019.The annual average DSSR_(SBD)under clear-sky conditions in Xinjiang during 2017–2019 was 606.78 W m^(-2),while DSSR from CERES(DSSR_(CER))under the same conditions was generally higher(703.95 W m^(-2)).(5)It is found that satellite remote sensing products experienced data loss in high-altitude snow areas,where numerical simulation technology could serve as a valuable complement.展开更多
Tb3+ and Yb3+ codoped Lu2O3 nanophosphors were synthesized by the reverse-strike co-precipitation method. The obtained Lu2O3:Tb3+,Yb3+ nanophosphors were characterized by X-ray diffraction (XRD) and photolumine...Tb3+ and Yb3+ codoped Lu2O3 nanophosphors were synthesized by the reverse-strike co-precipitation method. The obtained Lu2O3:Tb3+,Yb3+ nanophosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra. The XRD results showed that all the prepared nanophosphors could be readily indexed to pure cubic phase of Lu2O3 and indicated good crystallinity. The Tb3+→Yb3+ energy transfer mechanisms in the UV-blue region in Lu2O3 nanophosphors were investigated. The experimental results showed that the strong visible emission around 543 nm from Tb3+ (5D4→7F5) and near-infrared (NIR) emission around 973 nm from Yb3+ (2F5/2→2F7/2) of Lu2O3:Tb3+,Yb3+ nanophosphors were observed under ultraviolet light excitation, respectively. Tb3+ could be effectively excited up to its 4f75d1 state and relaxed down to the 5D4 level, from which the energy was transferred cooperatively to two neighboring Yb3+. The Yb3+ concentration dependent luminescent properties and lifetimes of both the visible and NIR emissions were also studied. The lifetime of the visible emission decreased with the increase of Yb3+ concentration, verifying the efficient energy transfer from the Tb3+ to the Yb3+. Cooperative energy transfer (CET) from Tb3+ to Yb3+ was discussed as a possible mechanism for the near-infrared emission. When doped concentrations were 1 mol.% Tb3+ and 2 mol.% Yb3+, the intensity of NIR emission was the strongest.展开更多
This study presented the luminescence properties of Nd^3+/Yb^3+/Ho^3+ dopant ions inside a host based on Ga_2O_3-GeO_2-Li_2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass...This study presented the luminescence properties of Nd^3+/Yb^3+/Ho^3+ dopant ions inside a host based on Ga_2O_3-GeO_2-Li_2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass exhibited excellent stability against devitrification with ?T=135 oC. Obvious 543 and 657 nm emissions were observed in Nd^3+/Ho^3+-codoped sample. The incorporation of Yb^3+ into Nd^3+/Ho^3+-codoped glass system had resulted in enhanced upconversion emission intensity under the excitation of 808 nm and/or 980 nm laser diode(LD). The possible mechanisms and related discussions on this phenomenon were presented. It was noted that the presence of Yb^3+ yielded an enhancement about 7 and 11 times in the 543 and 657 nm emission intensities respectively under 808 nm excitation due to the energy transfer from Nd^3+ to Ho^3+ via Yb^3+ ion. Here Yb^3+ played a major role as a bridging ion. While enhanced 543 and 657 nm emission intensities under the excitation of 980 nm LD originated from the sensitization effect of Yb^3+. Our results showed that Nd^3+/Ho^3+/Yb^3+ triply doped GGL glass might be a promising candidate for the development of visible-laser materials.展开更多
The powders of RE2Co17(RE=Y, Ce, Nd, Ho, Er) and Ho x Co100–x(x=6, 8, 10, 12) alloys were prepared by the arc melting method and high-energy ball mill process. The compositions and morphologies of the alloys were...The powders of RE2Co17(RE=Y, Ce, Nd, Ho, Er) and Ho x Co100–x(x=6, 8, 10, 12) alloys were prepared by the arc melting method and high-energy ball mill process. The compositions and morphologies of the alloys were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM), and the microwave absorbing properties were studied by a vector network analyzer. The results showed that the alloy of Y2Co17 had better absorbing properties at low frequencies and its lowest reflectivity value was –9.5 d B at 3.8 GHz. The lowest reflectivity value of Ho2Co17 alloy was –13.7 d B at 7.02 GHz and it obtained large absorbing bandwidth. Reflectivity value less than –5 d B was from 5.1 to 10.2 GHz. When x=6 and x=8, the alloys of Ho x Co100–x consisted of Ho2Co17 phase and Co phase. They had good radar absorbing properties. With increase in Ho content, the minimum reflectivity value worsened and the absorbing peak frequency shifted toward higher frequencies. But when x=12, the absorbing peak frequency shifted toward lower frequencies but the minimum reflectivity value worsened.展开更多
Top-of-atmosphere(TOA)outgoing longwave radiation(OLR),a key component of the Earth’s energy budget,serves as a diagnostic of the Earth’s climate system response to incoming solar radiation.However,existing products...Top-of-atmosphere(TOA)outgoing longwave radiation(OLR),a key component of the Earth’s energy budget,serves as a diagnostic of the Earth’s climate system response to incoming solar radiation.However,existing products are typically estimated using broadband sensors with coarse spatial resolutions.This paper presents a machine learning method to estimate TOA OLR by directly linking Moderate Resolution Imaging Spectroradiometer(MODIS)TOA radiances with TOA OLR determined by Clouds and the Earth’s Radiant Energy System(CERES)and other information,such as the viewing geometry,land surface temperature and cloud top temperature determined by Modern-Era Retrospective analysis for Research and Applications,Version 2(MERRA-2).Models are built separately under clear-and cloudy-sky conditions using a gradient boosting regression tree.Independent test results show that the root mean square errors(RMSEs)of the clear-sky and cloudy-sky models for estimating instantaneous values are 4.1 and 7.8 W/m^(2),respectively.Real-time conversion ratios derived from CERES daily and hourly OLR data are used to convert the instantaneous MODIS OLR to daily results.Inter-comparisons of the daily results show that the RMSE of the estimated MODIS OLR is 8.9 W/m^(2) in East Asia.The developed high resolution dataset will be beneficial in analyzing the regional energy budget.展开更多
A series of Eu^2+,Tb^3+-codoped Sr3 Y(PO4)3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spe...A series of Eu^2+,Tb^3+-codoped Sr3 Y(PO4)3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu^2+, and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu^2+,Tb^3+ phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f^65 d^1→4 f^7 transition of Eu^2+ ions and ~5 D4→~7 F5 transition of Tb^3+ ions, respectively. Optimal doping concentrations of Eu^2+ and Tb^3+ in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu^2+,Tb^3+ phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.展开更多
AlON:1.6 mol.%Er3+, x mol.%Yb3+(x=0, 2.6, 3.1, 3.6, 4.1, 4.6) phosphors were synthesized successfully by aluminothermic reduction and nitridation(ATRN) method and characterized by X-ray diffraction(XRD), scan...AlON:1.6 mol.%Er3+, x mol.%Yb3+(x=0, 2.6, 3.1, 3.6, 4.1, 4.6) phosphors were synthesized successfully by aluminothermic reduction and nitridation(ATRN) method and characterized by X-ray diffraction(XRD), scanning electron microscopy(FESEM) and upconversion photoluminescence(UCPL) emission spectra. Under the excitation of diode laser 980 nm, the green(556 nm) and red(655 nm) upconverted emissions were observed, attributed to the 4S3/2→4I15/2 and 4F9/2→4I15/2 transition of Er3+respectively. The emission intensity increased with increasing Yb3+ concentration due to the energy transfer(ET) between Yb3+ and Er3+. The upconverted emission reached the highest as x=3.6, and was pump-power dependent involving a two-photon process.展开更多
A detailed study of the fluorescence emission properties and energy transfer mechanism in Er^(3+)/Tm^(3+) co-doped lead silicate glasses was reported. Enhanced near infrared 1.8 μm and visible up-conversion emi...A detailed study of the fluorescence emission properties and energy transfer mechanism in Er^(3+)/Tm^(3+) co-doped lead silicate glasses was reported. Enhanced near infrared 1.8 μm and visible up-conversion emissions were investigated under 808 and 980 nm excitations, respectively. The energy transfer mechanism between Er^(3+) and Tm^(3+) was analyzed according to the absorption spectra, the emission spectra and the level structures of Er^(3+) and Tm^(3+). The energy transfer efficiency between Er^(3+) and Tm^(3+) reached 68.1% in the Er^(3+)/Tm^(3+) co-doped lead silicate glasses when pumped by 808 nm laser diode. Based on the absorption spectra, the Judd-Ofelt parameters, spontaneous emission probability, absorption and emission cross sections, gain coefficients were calculated and analyzed. It was found that the calculated emission cross section and the maximum gain coefficient around 1.8 μm were 4.9×10^(–21)cm^2 and 1.12 cm^(–1), respectively. These results indicated that the Er^(3+)/Tm^(3+) co-doped lead-silicate glasses had potential application in near infrared lasers.展开更多
Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the...Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the longer wavelength region,and the spectral origin were discussed.The emission spectra were measured in two different exciting ways,i.e.,exciting the VO 4 group at 270 nm and the Eu 3+ ion at 398 nm,respectively,and the energy transferring process was reasonably suggested.Furthermore,multi-color emission could be achieved in Sr 2.5 Dy 1/3-x Eu x V 2 O 8,indicating that the studied samples had potential applications in the white light emitting diodes.Further investigation showed that reducing the concentration of Eu 3+ and Dy 3+ and introducing Bi 3+ as a sensitizer ion greatly enhanced the emission intensity.展开更多
Outgoing longwave radiation(OLR)at the top of the atmosphere(TOA)is a key parameter for understanding and interpreting the relationship between clouds,radiation,and climate interactions.It has been one of the operatio...Outgoing longwave radiation(OLR)at the top of the atmosphere(TOA)is a key parameter for understanding and interpreting the relationship between clouds,radiation,and climate interactions.It has been one of the operational products of the Fengyun(FY)meteorological satellites.OLR accuracy has gradually improved with advancements in satellite payload performance and the OLR retrieval algorithm.Supported by the National Key R&D Program Retrospective Calibration of Historical Chinese Earth Observation Satellite data(Richceos)project,a long-term OLR climate data record(CDR)was reprocessed based on the recalibrated Level 1 data of FY series satellites using the latest OLR retrieval algorithm.In this study,Fengyun-3B(FY-3B)’s reprocessed global OLR data from 2010 to 2018 were evaluated by using the Clouds and the Earth’s Radiant Energy System(CERES)global daily OLR data.The results showed that there was a high consistency between the FY-3B instantaneous OLR and CERES Single Scanner Footprint(SSF)OLR.Globally,between the two CDR datasets,the correlation coefficient reached 0.98,and the rootmean-square error(RMSE)was approximately 8-9 W m^(−2).The bias mainly came from the edge regions of the satellite orbit,which may be related to the satellite zenith angle and cloud cover distribution.It was shown that the longterm FY-3B OLR had temporal stability compared to CERES OLR long-term data.In terms of spatial distribution,the mean deviations showed zonal and seasonal characteristics,although seasonal fluctuations were observed in the differences between the two datasets.Effects of FY-3B OLR application to the South China Sea monsoon region and ENSO were demonstrated and analyzed,and the results showed that the seasonal deviation of FY-3B’s OLR comes mainly from the retrieval algorithm.However,it has little effect on the analysis of climate events.展开更多
文摘Energy used for industrial production, buildings and transport will be accumulated in Atmosphere and Earth land. Global use of energy is known and documented for a long period of time and proportion of fossil and renewable energy is also known. Calculated accumulated energy in Earth land from 1971 to 2018 corresponds to 40% of IPCC Global Energy Inventory and calculated Atmosphere temperature increase from 1971 to 2018 corresponds to 100% of actual measurements.
文摘Geothermal heat pumps (GHPs) are an attractive proposition for renewable energy worldwide as it uses energy naturally stored in the earth. The Earth is a very resourceful form of energy, using the natural solar energy collection and heat storage capabilities as an infinite heat source/heat sink at the base of permeable pavements, which can provide excellent temperature gradients for GHP's. Experimental rigs were setup up at The University of Edinbttrgh for a combined permeable pavement and GHP system. At the base of a pavement structure (approximately 1 meter) below the ground's surface, temperatures are constant of 10℃ in the U.K all year round. The GHP performance efficiency was analysed by the coefficient of performance (COP) in a heating cycle and the energy efficiency ratio (EER) in a cooling cycle. The mean COP and EER for both systems averaged between 2-4.5 and 3-5 respectively. The combined GHP and pavement structure operated at an optimum efficiency for both heating and cooling cycles and has shown to be unaffected by higher summer or lower winter temperatures. This hybrid system is an attractive renewable energy technology and has additional environmental benefits such as urban runoff reuse and recycling.
文摘Today anthropogenic climate change is underway and predicted future global temperatures vary significantly. However, the drivers of current climate change and their links to Earth’s natural glacial cycle have yet to be fully resolved. Currently, many on a local level understand, and are exposed to, the heat energy generated by what’s referred to as the urban heat island effect (UHI), whereby natural flora with higher albedos </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> replaced by manmade urban areas with lower albedos. This heat effect is not constrained to these regions and all anthropogenic surfaces with lower albedos need to be studied and quantified as the accumulated additional heat energy (infrared energy) is trapped within Earth’s atmosphere and could affect the Earth on a planetary level. Deployed satellites have detected critical changes to Earth’s albedo to lower levels, however the cause and impact of these changes have yet to be fully understood and incorporated into Global Circulation models (GCMs). Here it’s shown that industrialization of anthropogenic landscape practices of the past century has displaced millions of square kilometres of naturally high albedo grasslands with lower albedo agricultural landscapes. Utilising a fundamental Energy Balance Model, (EBM) it’s demonstrated these specific changes have generated vast amounts of additional heat energy which is trapped by the atmosphere, transferred and stored within the oceans of the Earth as shown in <b></span></span></span><a href="file:///E:/360data/%E9%87%8D%E8%A6%81%E6%95%B0%E6%8D%AE/%E6%A1%8C%E9%9D%A2/%E7%A9%BA%E7%99%BD%E9%A1%B5.docx#F1"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">Figure 1</span></b></span></span></a><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"></b></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">. The total additional heat energy accumulated over the preceding 110 years correlates to that required to warm the Earth to the levels seen to date, altering Earth’s overall energy budget. This energy will continue to accumulate and warm the Earth to a predicted 1.60 ± 0.20 Celsius by 2050 over 1910 levels. These findings are independent of anthropogenic Greenhouse Gas (GHG) additions and are further validated by predicting Earth’s temperature and albedo at the last glacial maxima, suggesting that an albedo cycle aligned to Gaia theory is the primary driver of Earth’s natural climate cycle.
基金supported by National Key Research and Development Program of China[grant number 2016YFA0600101]National Aeronautics and Space Administration[grant number 80NSSC18K0620].
文摘The Earth’s climate is largely determined by its energy budget.Since the 1960s,satellite remote sensing has been used in estimating these energy budget components at both the top of the atmosphere(TOA)and the surface.Besides the broadband sensors that have been traditionally used for monitoring Earth’s Energy Budget(EEB),data from a variety of narrowband sensors aboard both polar-orbiting and geostationary satellites have also been extensively employed to estimate the EEB components.This paper provides a comprehensive review of the satellite missions,state-of-the art estimation algorithms and the satellite products,and also synthesizes current understanding of the EEB and spatiotemporal variations.The TOA components include total solar irradiance,reflected shortwave radiation/planetary albedo,outgoing longwave radiation,and energy imbalance.The surface components include incident solar radiation,shortwave albedo,shortwave net radiation,longwave downward and upwelling radiation,land and sea surface temperature,surface emissivity,all-wave net radiation,and sensible and latent heat fluxes.Some challenges,and outlook such as virtual constellation of different satellite sensors,temporal homogeneity tests of long time-series products,algorithms ensemble,and products intercomparison are also discussed.
基金supported by the Korea Meteorological Administration Research and Development Program (Grant No. CATER 2012-2040)
文摘Hourly outgoing longwave radiation (OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite (COMS) has been retrieved since June 2010.The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels.This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm (OLR12.0 using the 12.0 μm channel) and three multiple-channel algorithms (OLR10.8+12.0 using the 10.8 and 12.0 pm channels; OLR6.7+10.8 using the 6.7 and 10.8 μm channels; and OLRAll using the 6.7,10.8,and 12.0 μm channels).The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System (CERES) over the full COMS field of view [roughly (50°S-50°N,70°-170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5-7 W m-2,which indicates good agreement with CERES OLR over the vast domain.OLR6.7+10.8 and OLRAll have much smaller errors (~ 6 W m-2) than OLR12.0 and OLR10.8+12.0 (~ 8 W m-2).Moreover,the small errors of OLR6.7+10.8 and OLRAll are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration.These results indicate a noteworthy role of the 6.7 μm water vapor absorption channel in improving the accuracy of the OLRs.The dependence of the accuracy of COMS OLRs on various surface,atmospheric,and observational conditions is also discussed.
文摘The combustion energy has been determined for the nine solid complexes of rare earth perchlorate with glycine and imidazole using a rotatingbomb calorimeter.The standard enthalpy of combustion,H0 -c,coor(s), and standard enthalpy of formation,H0 -f,coor(s), for these complexes have been calculated. From the plot of standard enthalpy of formation versus atomic number of the elements in lanthanide series the tripartite effect regularity was observed and the unknown standard enthalpy of formation for similar complexes,Ce(Gly)4(Im)(ClO4)32H2O and Pm(Gly)4(Im)(ClO4)32H2O,can be estimated according to the figure.
文摘The TMT Detailed Science Case describes the transformational science that the Thirty Meter Telescope will enable. Planned to begin science operations in 2024, TMT will open up opportunities for revolutionary discoveries in essen- tially every field of astronomy, astrophysics and cosmology, seeing much fainter objects much more clearly than existing telescopes. Per this capability, TMT's sci- ence agenda fills all of space and time, from nearby comets and asteroids, to exo- planets, to the most distant galaxies, and all the way back to the very first sources of light in the universe. More than 150 astronomers from within the TMT partner- ship and beyond offered input in compiling the new 2015 Detailed Science Case. The contributing astronomers represent the entire TMT partnership, including the California Institute of Technology (Caltech), the Indian Institute of Astrophysics (HA), the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), the National Astronomical Observatory of Japan (NAOJ), the University of California, the Association of Canadian Universities for Research in Astronomy (ACURA) and US associate partner, the Association of Universities for Research in Astronomy (AURA).
文摘According to the latest report of Pike Research,the demand for rare earth in the new energy technology field will break the mark of 12,000 tons to reach 12,920 tons in 2017 from about 9,000 tons in 2011,indicating rapid development of China’s rare earth hydrogen storage material industry.
基金Project supported by the National Natural Science Foundation of China(61307111,51272097,61265004)Ningbo Natural Science Foundation(2015A610079)+1 种基金Ningbo University Science Research Fund Project(XYL15022)General Project of Zhejiang Provincial Department of Education(Y201533345)
文摘The upconversion(UC) of the rare earth doped glass-ceramics has been extensively investigated due to their potential applications in many fields, such as color display, high density memories, optical data storage, sensor and energy solar cell, etc. Many series of them, especially the oxyfluorides glasses containing Ba2 LaF 7 nanocrystals were studied in this review work, due to the thermal and mechanical toughness, high optical transmittance from the ultraviolet to the infrared regions, and a low nonlinear refractive index compared to the other commercial laser glasses. Moreover, the energy transfer(ET) between the rare earth ions and transition metals plays an important role in the upconversion process. The cooperative ET has been researched very activly in UC glasses due to applications in the fields of solar cells, such as in the Er/Yb, Tm/Yb, Tb/Yb, Tb/Er/Yb and Tm/Er/Yb couples. The present article reviews on the recent progress made on:(i) upconversion materials with fluoride microcrystals in glasses and the mechanisms involved, including the UC in double and tri-dopant RE ions activated fluoride microcrystal, energy transfer process; and(ii) the effect of the metal Mn and nanoparticles of Au, Ag, Cu on the enhancement of UC emissions. Discussions have also been made on materials, material synthesis, the structural and emission properties of glass-ceramics. Additionally, the conversion efficiency is still a challenge for the spectra conversion materials and application; challenge and future advances have also been demonstrated.
基金Science and Technology Planning Program of Xinjiang(2022E01047)National Natural Science Foundation of China(42030612 and 41905131)+2 种基金Scientific Research Program Funded by Education Department of Shaanxi Provincial Government(23JK0625)Natural Science Basic Research Program of Shaanxi Province(2021JQ-768)Social Science Planning Fund Program of Xi’an City(23JX150)。
文摘To harness the rich solar energy resources in Xinjiang Region of Northwest China,this study tries to address the issue of lack of downward surface shortwave radiation(DSSR)observations and the need to improve the accuracy of satellite retrieval and numerical simulation of DSSR under varied sky and meteorological conditions.(1)A two-layer aerosol model specific to Xinjiang was developed to capture the vertical distributions of aerosols based on multiple data sources including lidar,GPS sounding,ground meteorological observations,and profiles from the ECMWF reanalysis version 5(ERA5)data.The results show that the ERA5/PBLH(planetary boundary layer height)and ERA5/ALH(aerosol layer height)could be used to establish the two-layer aerosol model and characterize the vertical distribution of aerosols in Xinjiang Region.(2)Using the Santa Barbara Discrete Atmospheric Radiative Transfer(SBDART)model,a localized inverse model of clear-sky DSSR was established.After parameter adjustment and using the optimal combination of input parameters for DSSR simulation together with the two-layer aerosol model,the model-simulated DSSR(DSSRSBD)under clear-sky conditions improved significantly compared to the initial results,with all fitting indices greatly improved.(3)In addition,the study demonstrated that the impact of the two-layer aerosol model on DSSR was more pronounced under dust conditions than clear-sky conditions.(4)Using the localized clear-sky DSSR inversion model and its required parameters,simulations were also conducted to capture the spatiotemporal distribution of DSSR under clear-sky conditions in Xinjiang from 2017 to 2019.The annual average DSSR_(SBD)under clear-sky conditions in Xinjiang during 2017–2019 was 606.78 W m^(-2),while DSSR from CERES(DSSR_(CER))under the same conditions was generally higher(703.95 W m^(-2)).(5)It is found that satellite remote sensing products experienced data loss in high-altitude snow areas,where numerical simulation technology could serve as a valuable complement.
基金Project supported by National Natural Science Foundation of China (10774140, 11047147, 11074245, 11011120083)Knowledge Innovation Project of The Chinese Academy of Sciences (KJCX2-YW-M11)the Natural Science Foundation of Chongqing Municipal Education Commission (KJTD201016, KJ090514)
文摘Tb3+ and Yb3+ codoped Lu2O3 nanophosphors were synthesized by the reverse-strike co-precipitation method. The obtained Lu2O3:Tb3+,Yb3+ nanophosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectra. The XRD results showed that all the prepared nanophosphors could be readily indexed to pure cubic phase of Lu2O3 and indicated good crystallinity. The Tb3+→Yb3+ energy transfer mechanisms in the UV-blue region in Lu2O3 nanophosphors were investigated. The experimental results showed that the strong visible emission around 543 nm from Tb3+ (5D4→7F5) and near-infrared (NIR) emission around 973 nm from Yb3+ (2F5/2→2F7/2) of Lu2O3:Tb3+,Yb3+ nanophosphors were observed under ultraviolet light excitation, respectively. Tb3+ could be effectively excited up to its 4f75d1 state and relaxed down to the 5D4 level, from which the energy was transferred cooperatively to two neighboring Yb3+. The Yb3+ concentration dependent luminescent properties and lifetimes of both the visible and NIR emissions were also studied. The lifetime of the visible emission decreased with the increase of Yb3+ concentration, verifying the efficient energy transfer from the Tb3+ to the Yb3+. Cooperative energy transfer (CET) from Tb3+ to Yb3+ was discussed as a possible mechanism for the near-infrared emission. When doped concentrations were 1 mol.% Tb3+ and 2 mol.% Yb3+, the intensity of NIR emission was the strongest.
基金Project supported by the National Natural Science Foundation of China(51002070)Foundation of He’nan Educational Committee(14A430034,16A430040)+1 种基金Funding Scheme for Young Teachers of Higher School in Henan Province(2012GGJS-192)the Science and Technology Program of Luoyang City(1401051A)
文摘This study presented the luminescence properties of Nd^3+/Yb^3+/Ho^3+ dopant ions inside a host based on Ga_2O_3-GeO_2-Li_2O(GGL) glass. The measured differential scanning calorimetry result showed that GGL glass exhibited excellent stability against devitrification with ?T=135 oC. Obvious 543 and 657 nm emissions were observed in Nd^3+/Ho^3+-codoped sample. The incorporation of Yb^3+ into Nd^3+/Ho^3+-codoped glass system had resulted in enhanced upconversion emission intensity under the excitation of 808 nm and/or 980 nm laser diode(LD). The possible mechanisms and related discussions on this phenomenon were presented. It was noted that the presence of Yb^3+ yielded an enhancement about 7 and 11 times in the 543 and 657 nm emission intensities respectively under 808 nm excitation due to the energy transfer from Nd^3+ to Ho^3+ via Yb^3+ ion. Here Yb^3+ played a major role as a bridging ion. While enhanced 543 and 657 nm emission intensities under the excitation of 980 nm LD originated from the sensitization effect of Yb^3+. Our results showed that Nd^3+/Ho^3+/Yb^3+ triply doped GGL glass might be a promising candidate for the development of visible-laser materials.
基金Project supported by the National Natural Science Foundation of China(50961005,51161004,51361007)National Natural Science Foundation of Guangxi(2012GXNSFGA06002,2014GXNSFAA118317)
文摘The powders of RE2Co17(RE=Y, Ce, Nd, Ho, Er) and Ho x Co100–x(x=6, 8, 10, 12) alloys were prepared by the arc melting method and high-energy ball mill process. The compositions and morphologies of the alloys were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM), and the microwave absorbing properties were studied by a vector network analyzer. The results showed that the alloy of Y2Co17 had better absorbing properties at low frequencies and its lowest reflectivity value was –9.5 d B at 3.8 GHz. The lowest reflectivity value of Ho2Co17 alloy was –13.7 d B at 7.02 GHz and it obtained large absorbing bandwidth. Reflectivity value less than –5 d B was from 5.1 to 10.2 GHz. When x=6 and x=8, the alloys of Ho x Co100–x consisted of Ho2Co17 phase and Co phase. They had good radar absorbing properties. With increase in Ho content, the minimum reflectivity value worsened and the absorbing peak frequency shifted toward higher frequencies. But when x=12, the absorbing peak frequency shifted toward lower frequencies but the minimum reflectivity value worsened.
基金supported by the Open Research P rogram of the International Research Center of Big Data for Sus-tainable Development Goals(grant no.CBAS2022ORP01)the National Natural Science Foundation of China(grant no.42090011).
文摘Top-of-atmosphere(TOA)outgoing longwave radiation(OLR),a key component of the Earth’s energy budget,serves as a diagnostic of the Earth’s climate system response to incoming solar radiation.However,existing products are typically estimated using broadband sensors with coarse spatial resolutions.This paper presents a machine learning method to estimate TOA OLR by directly linking Moderate Resolution Imaging Spectroradiometer(MODIS)TOA radiances with TOA OLR determined by Clouds and the Earth’s Radiant Energy System(CERES)and other information,such as the viewing geometry,land surface temperature and cloud top temperature determined by Modern-Era Retrospective analysis for Research and Applications,Version 2(MERRA-2).Models are built separately under clear-and cloudy-sky conditions using a gradient boosting regression tree.Independent test results show that the root mean square errors(RMSEs)of the clear-sky and cloudy-sky models for estimating instantaneous values are 4.1 and 7.8 W/m^(2),respectively.Real-time conversion ratios derived from CERES daily and hourly OLR data are used to convert the instantaneous MODIS OLR to daily results.Inter-comparisons of the daily results show that the RMSE of the estimated MODIS OLR is 8.9 W/m^(2) in East Asia.The developed high resolution dataset will be beneficial in analyzing the regional energy budget.
基金Project supported by the National Natural Science Foundation of China(61664002)the Natural Science Foundation of Guangxi Province(2016GXNSFDA380036)
文摘A series of Eu^2+,Tb^3+-codoped Sr3 Y(PO4)3(SYP) green phosphors were synthesized by hightemperature solid-state reaction. Several techniques, such as X-ray diffraction, UV-vis spectrum,and photoluminescence spectrum, were used to investigate the obtained phosphors. The present study investigates in detail photoluminescence excitation and emission properties, energy transfer between the two dopants, and effects of doping ions on optical band gap. SYP:0.05 Eu2+ phosphor shows an intense and broad excitation band ranging from 220 to 400 nm and exhibits a bright green emission band with CIE chromaticity coordinates(0.189, 0.359) under 350 nm excitation. Green emission of SYP:0.03 Tb3+ is intensified by codoping with Eu^2+, and energy transfer mechanism between them is demonstrated to be a dipole-dipole interaction. Upon 350 nm excitation, SYP:Eu^2+,Tb^3+ phosphors exhibits two dominating bands peaking at 466 and 545 nm, which are assigned to 4 f^65 d^1→4 f^7 transition of Eu^2+ ions and ~5 D4→~7 F5 transition of Tb^3+ ions, respectively. Optimal doping concentrations of Eu^2+ and Tb^3+ in the SYP host are 5 mol% and 15 mol%, respectively. Results indicate that SYP:Eu^2+,Tb^3+ phosphors are potentially used as green-emitting phosphors for white light-emitting diodes.
基金Project supported by National Natural Science Foundation of China(91022035)"One Hundred Talent Project"the Natural Science Foundation of Fujian Province(2014H0055)
文摘AlON:1.6 mol.%Er3+, x mol.%Yb3+(x=0, 2.6, 3.1, 3.6, 4.1, 4.6) phosphors were synthesized successfully by aluminothermic reduction and nitridation(ATRN) method and characterized by X-ray diffraction(XRD), scanning electron microscopy(FESEM) and upconversion photoluminescence(UCPL) emission spectra. Under the excitation of diode laser 980 nm, the green(556 nm) and red(655 nm) upconverted emissions were observed, attributed to the 4S3/2→4I15/2 and 4F9/2→4I15/2 transition of Er3+respectively. The emission intensity increased with increasing Yb3+ concentration due to the energy transfer(ET) between Yb3+ and Er3+. The upconverted emission reached the highest as x=3.6, and was pump-power dependent involving a two-photon process.
基金Project supported by the China National Funds for Distinguished Young Scientists(61325024)Hi-tech Research and Development Program of China(National 863 Project:2014AA041902)+2 种基金National Nature Science Foundation of China(11174085,51132004,51302086)the Fund of Guangdong Province Cooperation of Producing,Studying and Researching(2012B091100140)Guangdong Natural Science Foundation(S2011030001349)
文摘A detailed study of the fluorescence emission properties and energy transfer mechanism in Er^(3+)/Tm^(3+) co-doped lead silicate glasses was reported. Enhanced near infrared 1.8 μm and visible up-conversion emissions were investigated under 808 and 980 nm excitations, respectively. The energy transfer mechanism between Er^(3+) and Tm^(3+) was analyzed according to the absorption spectra, the emission spectra and the level structures of Er^(3+) and Tm^(3+). The energy transfer efficiency between Er^(3+) and Tm^(3+) reached 68.1% in the Er^(3+)/Tm^(3+) co-doped lead silicate glasses when pumped by 808 nm laser diode. Based on the absorption spectra, the Judd-Ofelt parameters, spontaneous emission probability, absorption and emission cross sections, gain coefficients were calculated and analyzed. It was found that the calculated emission cross section and the maximum gain coefficient around 1.8 μm were 4.9×10^(–21)cm^2 and 1.12 cm^(–1), respectively. These results indicated that the Er^(3+)/Tm^(3+) co-doped lead-silicate glasses had potential application in near infrared lasers.
基金supported by National Natural Science Foundation of China (11174004)Higher Educational Natural Science Foundation of Anhui Province (KJ2010A012)
文摘Photoluminescence properties of Sr 2.5 Dy 1/3-x Eu x V 2 O 8(x=0,0.06,0.12,0.18,0.24,0.33) were investigated.The excitation spectra included a broad band in the short wavelength region and several sharp lines in the longer wavelength region,and the spectral origin were discussed.The emission spectra were measured in two different exciting ways,i.e.,exciting the VO 4 group at 270 nm and the Eu 3+ ion at 398 nm,respectively,and the energy transferring process was reasonably suggested.Furthermore,multi-color emission could be achieved in Sr 2.5 Dy 1/3-x Eu x V 2 O 8,indicating that the studied samples had potential applications in the white light emitting diodes.Further investigation showed that reducing the concentration of Eu 3+ and Dy 3+ and introducing Bi 3+ as a sensitizer ion greatly enhanced the emission intensity.
基金Supported by the National Key Research and Development Program of China(2018YFB0504900 and 2018YFB0504905)National Natural Science Foundation of China(41801278).
文摘Outgoing longwave radiation(OLR)at the top of the atmosphere(TOA)is a key parameter for understanding and interpreting the relationship between clouds,radiation,and climate interactions.It has been one of the operational products of the Fengyun(FY)meteorological satellites.OLR accuracy has gradually improved with advancements in satellite payload performance and the OLR retrieval algorithm.Supported by the National Key R&D Program Retrospective Calibration of Historical Chinese Earth Observation Satellite data(Richceos)project,a long-term OLR climate data record(CDR)was reprocessed based on the recalibrated Level 1 data of FY series satellites using the latest OLR retrieval algorithm.In this study,Fengyun-3B(FY-3B)’s reprocessed global OLR data from 2010 to 2018 were evaluated by using the Clouds and the Earth’s Radiant Energy System(CERES)global daily OLR data.The results showed that there was a high consistency between the FY-3B instantaneous OLR and CERES Single Scanner Footprint(SSF)OLR.Globally,between the two CDR datasets,the correlation coefficient reached 0.98,and the rootmean-square error(RMSE)was approximately 8-9 W m^(−2).The bias mainly came from the edge regions of the satellite orbit,which may be related to the satellite zenith angle and cloud cover distribution.It was shown that the longterm FY-3B OLR had temporal stability compared to CERES OLR long-term data.In terms of spatial distribution,the mean deviations showed zonal and seasonal characteristics,although seasonal fluctuations were observed in the differences between the two datasets.Effects of FY-3B OLR application to the South China Sea monsoon region and ENSO were demonstrated and analyzed,and the results showed that the seasonal deviation of FY-3B’s OLR comes mainly from the retrieval algorithm.However,it has little effect on the analysis of climate events.