Back-to-back mechanically stabilized earth walls (BBMSEWs) are encountered in bridge approaches, ramp ways, rockfall protection systems, earth dams, levees and noise barriers. However, available design guidelines fo...Back-to-back mechanically stabilized earth walls (BBMSEWs) are encountered in bridge approaches, ramp ways, rockfall protection systems, earth dams, levees and noise barriers. However, available design guidelines for BBMSEWs are limited and not applicable to numerical modeling when back-to-back walls interact with each other. The objective of this paper is to investigate, using PLAXIS code, the effects of the reduction in the distance between BBMSEW, the reinforcement length, the quality of backfill material and the connection of reinforcements in the middle, when the back-to-back walls are close. The results indicate that each of the BBMSEWs behaves independently if the width of the embankment between mechanically stabilized earth walls is greater than that of the active zone. This is in good agreement with the result of FHWA design guideline. However, the results show that the FHWA design guideline underestimates the lateral earth pressure when back-to-back walls interact with each other. Moreover, for closer BBMSEWs, FHWA design guideline strongly overestimates the maximum tensile force in the reinforcement. The investigation of the quality of backfill material shows that the minor increase in embankment cohesion can lead to significant reductions in both the lateral earth pressure and the maximum tensile force in geosynthetic. When the distance between the two earth walls is close to zero, the connection of reinforcement between back-to-back walls significantly improves the factor of safety.展开更多
Nd3+ substituted spinel ferrites with formula MgxCd1-xNd0.03Fe1.97O4(x = 0.0.2,0.4,0.6.0.8 and 1.0)were prepared by oxalate co-precipitation method using novel microwave sintering technique. AR grade sulphates were...Nd3+ substituted spinel ferrites with formula MgxCd1-xNd0.03Fe1.97O4(x = 0.0.2,0.4,0.6.0.8 and 1.0)were prepared by oxalate co-precipitation method using novel microwave sintering technique. AR grade sulphates were used as starting chemicals. The samples were sintered at optimized power of 70 W for10 min in a microwave oven(800 W). The structural analysis of these samples was done by using X-ray diffraction, scanning electron microscope and Fourier transform IR techniques. The XRD analysis of the synthesized ferrite confirms the formation of cubic spinel structure of ferrite. The influence of Nd3+substitution on various structural parameters of Mg-Cd ferrites was reported. IR study indicates the spectra contain two intense absorption bands around 600 and 400 cm^(-1) in addition with four extra bands. The magnetic properties of all ferrites were studied by using a vibration sample magnetometer.The crystallite and grain size dependant magnetic properties are observed. The composition Mg_(0.6)Cd_(0.4)Nd_(0.03)Fe_(1.97)O_4 has better magnetic properties that can be used in recording media. The fast synthesis of spinel ferrites is yielded due to use of the microwave sintering technique.展开更多
文摘Back-to-back mechanically stabilized earth walls (BBMSEWs) are encountered in bridge approaches, ramp ways, rockfall protection systems, earth dams, levees and noise barriers. However, available design guidelines for BBMSEWs are limited and not applicable to numerical modeling when back-to-back walls interact with each other. The objective of this paper is to investigate, using PLAXIS code, the effects of the reduction in the distance between BBMSEW, the reinforcement length, the quality of backfill material and the connection of reinforcements in the middle, when the back-to-back walls are close. The results indicate that each of the BBMSEWs behaves independently if the width of the embankment between mechanically stabilized earth walls is greater than that of the active zone. This is in good agreement with the result of FHWA design guideline. However, the results show that the FHWA design guideline underestimates the lateral earth pressure when back-to-back walls interact with each other. Moreover, for closer BBMSEWs, FHWA design guideline strongly overestimates the maximum tensile force in the reinforcement. The investigation of the quality of backfill material shows that the minor increase in embankment cohesion can lead to significant reductions in both the lateral earth pressure and the maximum tensile force in geosynthetic. When the distance between the two earth walls is close to zero, the connection of reinforcement between back-to-back walls significantly improves the factor of safety.
文摘Nd3+ substituted spinel ferrites with formula MgxCd1-xNd0.03Fe1.97O4(x = 0.0.2,0.4,0.6.0.8 and 1.0)were prepared by oxalate co-precipitation method using novel microwave sintering technique. AR grade sulphates were used as starting chemicals. The samples were sintered at optimized power of 70 W for10 min in a microwave oven(800 W). The structural analysis of these samples was done by using X-ray diffraction, scanning electron microscope and Fourier transform IR techniques. The XRD analysis of the synthesized ferrite confirms the formation of cubic spinel structure of ferrite. The influence of Nd3+substitution on various structural parameters of Mg-Cd ferrites was reported. IR study indicates the spectra contain two intense absorption bands around 600 and 400 cm^(-1) in addition with four extra bands. The magnetic properties of all ferrites were studied by using a vibration sample magnetometer.The crystallite and grain size dependant magnetic properties are observed. The composition Mg_(0.6)Cd_(0.4)Nd_(0.03)Fe_(1.97)O_4 has better magnetic properties that can be used in recording media. The fast synthesis of spinel ferrites is yielded due to use of the microwave sintering technique.