Metaheuristic optimization algorithms present an effective method for solving several optimization problems from various types of applications and fields.Several metaheuristics and evolutionary optimization algorithms...Metaheuristic optimization algorithms present an effective method for solving several optimization problems from various types of applications and fields.Several metaheuristics and evolutionary optimization algorithms have been emerged recently in the literature and gained widespread attention,such as particle swarm optimization(PSO),whale optimization algorithm(WOA),grey wolf optimization algorithm(GWO),genetic algorithm(GA),and gravitational search algorithm(GSA).According to the literature,no one metaheuristic optimization algorithm can handle all present optimization problems.Hence novel optimization methodologies are still needed.The Al-Biruni earth radius(BER)search optimization algorithm is proposed in this paper.The proposed algorithm was motivated by the behavior of swarm members in achieving their global goals.The search space around local solutions to be explored is determined by Al-Biruni earth radius calculation method.A comparative analysis with existing state-of-the-art optimization algorithms corroborated the findings of BER’s validation and testing against seven mathematical optimization problems.The results show that BER can both explore and avoid local optima.BER has also been tested on an engineering design optimization problem.The results reveal that,in terms of performance and capability,BER outperforms the performance of state-of-the-art metaheuristic optimization algorithms.展开更多
Several instances of pneumonia with no clear etiology were recorded in Wuhan,China,on December 31,2019.The world health organization(WHO)called it COVID-19 that stands for“Coronavirus Disease 2019,”which is the seco...Several instances of pneumonia with no clear etiology were recorded in Wuhan,China,on December 31,2019.The world health organization(WHO)called it COVID-19 that stands for“Coronavirus Disease 2019,”which is the second version of the previously known severe acute respiratory syndrome(SARS)Coronavirus and identified in short as(SARSCoV-2).There have been regular restrictions to avoid the infection spread in all countries,including Saudi Arabia.The prediction of new cases of infections is crucial for authorities to get ready for early handling of the virus spread.Methodology:Analysis and forecasting of epidemic patterns in new SARSCoV-2 positive patients are presented in this research using metaheuristic optimization and long short-term memory(LSTM).The optimization method employed for optimizing the parameters of LSTM is Al-Biruni Earth Radius(BER)algorithm.Results:To evaluate the effectiveness of the proposed methodology,a dataset is collected based on the recorded cases in Saudi Arabia between March 7^(th),2020 and July 13^(th),2022.In addition,six regression models were included in the conducted experiments to show the effectiveness and superiority of the proposed approach.The achieved results show that the proposed approach could reduce the mean square error(MSE),mean absolute error(MAE),and R^(2)by 5.92%,3.66%,and 39.44%,respectively,when compared with the six base models.On the other hand,a statistical analysis is performed to measure the significance of the proposed approach.Conclusions:The achieved results confirm the effectiveness,superiority,and significance of the proposed approach in predicting the infection cases of COVID-19.展开更多
Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especia...Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especially those in the agricultural sector,rely on rain forecasts.Forecasting rainfall is challenging because of the changing nature of the weather.The area of Jimma in southwest Oromia,Ethiopia is the subject of this research,which aims to develop a rainfall forecasting model.To estimate Jimma's daily rainfall,we propose a novel approach based on optimizing the parameters of long short-term memory(LSTM)using Al-Biruni earth radius(BER)optimization algorithm for boosting the fore-casting accuracy.N ash-Sutcliffe model eficiency(NSE),mean square error(MSE),root MSE(RMSE),mean absolute error(MAE),and R2 were all used in the conducted experiments to assess the proposed approach,with final scores of(0.61),(430.81),(19.12),and(11.09),respectively.Moreover,we compared the proposed model to current machine-learning regression models;such as non-optimized LSTM,bidirectional LSTM(BiLSTM),gated recurrent unit(GRU),and convolutional LSTM(ConvLSTM).It was found that the proposed approach achieved the lowest RMSE of(19.12).In addition,the experimental results show that the proposed model has R-with a value outperforming the other models,which confirms the superiority of the proposed approach.On the other hand,a statistical analysis is performed to measure the significance and stability of the proposed approach and the recorded results proved the expected perfomance.展开更多
The effective earth radius factor(k-factor)has a refractive propagation effect on transmitted radio signals thus making its study necessary for the proper planning of terrestrial radio links and power budget.This stud...The effective earth radius factor(k-factor)has a refractive propagation effect on transmitted radio signals thus making its study necessary for the proper planning of terrestrial radio links and power budget.This study was carried out over the city of Lokoja,Nigeria,using ten years(2011 to 2020)atmospheric data of temperature,pressure and humidity both at the surface(12 m)and at 100 m AGL.The data were retrieved from European Centre for Medium-Range Weather Forecasts(ECMWF)ERA5.The k-factor yearly variation follows the same trend with minimum and maximum values obtained during dry and wet season months respectively.In addition,the highest mean value of 1.00042 was recorded in the month of August while the lowest value of 1.00040 was recorded in the month of January with an overall mean value of 1.0003.This value is less than the recommended standard of 1.33 by ITU-R.The propagation effect corresponding to k<1.33 is sub-refractive.The implication of this on radio wave propagation,especially terrestrial communications is that transmitted wireless signal is prone to losses.This can be mitigated through an effective power budget:Choice of transmitting antenna’s height and gain,so as to improve the Quality of Service over the study area.展开更多
文摘Metaheuristic optimization algorithms present an effective method for solving several optimization problems from various types of applications and fields.Several metaheuristics and evolutionary optimization algorithms have been emerged recently in the literature and gained widespread attention,such as particle swarm optimization(PSO),whale optimization algorithm(WOA),grey wolf optimization algorithm(GWO),genetic algorithm(GA),and gravitational search algorithm(GSA).According to the literature,no one metaheuristic optimization algorithm can handle all present optimization problems.Hence novel optimization methodologies are still needed.The Al-Biruni earth radius(BER)search optimization algorithm is proposed in this paper.The proposed algorithm was motivated by the behavior of swarm members in achieving their global goals.The search space around local solutions to be explored is determined by Al-Biruni earth radius calculation method.A comparative analysis with existing state-of-the-art optimization algorithms corroborated the findings of BER’s validation and testing against seven mathematical optimization problems.The results show that BER can both explore and avoid local optima.BER has also been tested on an engineering design optimization problem.The results reveal that,in terms of performance and capability,BER outperforms the performance of state-of-the-art metaheuristic optimization algorithms.
文摘Several instances of pneumonia with no clear etiology were recorded in Wuhan,China,on December 31,2019.The world health organization(WHO)called it COVID-19 that stands for“Coronavirus Disease 2019,”which is the second version of the previously known severe acute respiratory syndrome(SARS)Coronavirus and identified in short as(SARSCoV-2).There have been regular restrictions to avoid the infection spread in all countries,including Saudi Arabia.The prediction of new cases of infections is crucial for authorities to get ready for early handling of the virus spread.Methodology:Analysis and forecasting of epidemic patterns in new SARSCoV-2 positive patients are presented in this research using metaheuristic optimization and long short-term memory(LSTM).The optimization method employed for optimizing the parameters of LSTM is Al-Biruni Earth Radius(BER)algorithm.Results:To evaluate the effectiveness of the proposed methodology,a dataset is collected based on the recorded cases in Saudi Arabia between March 7^(th),2020 and July 13^(th),2022.In addition,six regression models were included in the conducted experiments to show the effectiveness and superiority of the proposed approach.The achieved results show that the proposed approach could reduce the mean square error(MSE),mean absolute error(MAE),and R^(2)by 5.92%,3.66%,and 39.44%,respectively,when compared with the six base models.On the other hand,a statistical analysis is performed to measure the significance of the proposed approach.Conclusions:The achieved results confirm the effectiveness,superiority,and significance of the proposed approach in predicting the infection cases of COVID-19.
文摘Rainfall plays a significant role in managing the water level in the reser-voir.The unpredictable amount of rainfall due to the climate change can cause either overflow or dry in the reservoir.Many individuals,especially those in the agricultural sector,rely on rain forecasts.Forecasting rainfall is challenging because of the changing nature of the weather.The area of Jimma in southwest Oromia,Ethiopia is the subject of this research,which aims to develop a rainfall forecasting model.To estimate Jimma's daily rainfall,we propose a novel approach based on optimizing the parameters of long short-term memory(LSTM)using Al-Biruni earth radius(BER)optimization algorithm for boosting the fore-casting accuracy.N ash-Sutcliffe model eficiency(NSE),mean square error(MSE),root MSE(RMSE),mean absolute error(MAE),and R2 were all used in the conducted experiments to assess the proposed approach,with final scores of(0.61),(430.81),(19.12),and(11.09),respectively.Moreover,we compared the proposed model to current machine-learning regression models;such as non-optimized LSTM,bidirectional LSTM(BiLSTM),gated recurrent unit(GRU),and convolutional LSTM(ConvLSTM).It was found that the proposed approach achieved the lowest RMSE of(19.12).In addition,the experimental results show that the proposed model has R-with a value outperforming the other models,which confirms the superiority of the proposed approach.On the other hand,a statistical analysis is performed to measure the significance and stability of the proposed approach and the recorded results proved the expected perfomance.
文摘The effective earth radius factor(k-factor)has a refractive propagation effect on transmitted radio signals thus making its study necessary for the proper planning of terrestrial radio links and power budget.This study was carried out over the city of Lokoja,Nigeria,using ten years(2011 to 2020)atmospheric data of temperature,pressure and humidity both at the surface(12 m)and at 100 m AGL.The data were retrieved from European Centre for Medium-Range Weather Forecasts(ECMWF)ERA5.The k-factor yearly variation follows the same trend with minimum and maximum values obtained during dry and wet season months respectively.In addition,the highest mean value of 1.00042 was recorded in the month of August while the lowest value of 1.00040 was recorded in the month of January with an overall mean value of 1.0003.This value is less than the recommended standard of 1.33 by ITU-R.The propagation effect corresponding to k<1.33 is sub-refractive.The implication of this on radio wave propagation,especially terrestrial communications is that transmitted wireless signal is prone to losses.This can be mitigated through an effective power budget:Choice of transmitting antenna’s height and gain,so as to improve the Quality of Service over the study area.