There is a wide diversity of landforms in China. The topography of three major ter- races, decreasing in height stepwise from west to east, was formed by the early Miocene. With the commencement of the Great Northern ...There is a wide diversity of landforms in China. The topography of three major ter- races, decreasing in height stepwise from west to east, was formed by the early Miocene. With the commencement of the Great Northern Hemisphere Glaciations (GHGs) and the glacial-interglacial cycles in the Pleistocene, thick loess deposits accumulated in north China, and fluvial terraces were formed and lakes expanded and contracted in eastern and central China. The earliest evidence of hominins in China is dated to ~1.7 Ma; they occupied the monsoon-dominated region for a long interval, until the late Pleistocene, ~50 ka. In this study, we investigated a large area rich in the relics and artifacts of early man. The results indicate that the early humans occupied riverine areas, especially medium-sized fluvial basins, and lake shores. Even in the relatively recent geological past, the occupation and abandonment of settlements were directly forced by the shifting of sand dune fields in the desert-loess transi- tional zone, which in turn was closely associated with variations in the monsoon climate and vegetation patterns. Our observations indicate that landforms were one of the main determi- nants of early human behavior, in that loess tableland, large alluvial plains, desert-Gobi areas, and the Tibetan Plateau, were not suitable environments for early human settlement. We infer that the early humans in China adapted their behavior to specific landforms and landform processes. The monsoon climate, which shapes the large-scale step-like pattern of fluvial landforms, promotes vegetation coverage and dominates soil formation, provides a crucial context for early human adaptation. The adaptation of early humans to earth surface proc- esses in East Asia is investigated for the first time in this study. Future investigations will provide further information that will increase our understanding of the linkage between early human behavior and landform processes in East Asia.展开更多
Due to large deserts on Earth surface a thorough understanding of climate change, landscape evolution and geomorphological processes having occurred in deserts is crucial for Earth System Science. The landscapes in de...Due to large deserts on Earth surface a thorough understanding of climate change, landscape evolution and geomorphological processes having occurred in deserts is crucial for Earth System Science. The landscapes in deserts are, however, diverse and different over the globe with regard to their geomorphological nature, human activities and geological histories. In the last decades a great number of efforts have been put to the investigation of the initial timing of the occurrence of arid climate, e. g. in northwestern China. Silty sediments in the downwind directions have been used to deduce the histories of deserts. In general, there is a lack of knowledge about processes and landscapes in Chinese drylands between the initial Miocene silt sedimentation at desert margins and the late Quaternary multiple occurrences of wetter climate with assumed large lakes in many of the deserts in northern China. The geomorphological concept of three primary triggering factors, i.e., the sediment supply, sediment availability and transport capacity of wind, and additionally the underground geology need to be fully considered for a better understanding of the environmental histories of sand seas which should not be viewed as equivalent for deserts because sand seas cover between 〈 1% and ca. 45% of the desert areas in various continents dependent on a complex interaction between various processes of both exogenous and endogenous origins.展开更多
基金Foundation: National Natural Science Foundation of China, No.41472138, No.41401220, No.41472026 The CAS Strate- gic Priority Research Program Grant B, No.XDPB05 The Ministry of Science and Technology of China, No.2016YFA0600503
文摘There is a wide diversity of landforms in China. The topography of three major ter- races, decreasing in height stepwise from west to east, was formed by the early Miocene. With the commencement of the Great Northern Hemisphere Glaciations (GHGs) and the glacial-interglacial cycles in the Pleistocene, thick loess deposits accumulated in north China, and fluvial terraces were formed and lakes expanded and contracted in eastern and central China. The earliest evidence of hominins in China is dated to ~1.7 Ma; they occupied the monsoon-dominated region for a long interval, until the late Pleistocene, ~50 ka. In this study, we investigated a large area rich in the relics and artifacts of early man. The results indicate that the early humans occupied riverine areas, especially medium-sized fluvial basins, and lake shores. Even in the relatively recent geological past, the occupation and abandonment of settlements were directly forced by the shifting of sand dune fields in the desert-loess transi- tional zone, which in turn was closely associated with variations in the monsoon climate and vegetation patterns. Our observations indicate that landforms were one of the main determi- nants of early human behavior, in that loess tableland, large alluvial plains, desert-Gobi areas, and the Tibetan Plateau, were not suitable environments for early human settlement. We infer that the early humans in China adapted their behavior to specific landforms and landform processes. The monsoon climate, which shapes the large-scale step-like pattern of fluvial landforms, promotes vegetation coverage and dominates soil formation, provides a crucial context for early human adaptation. The adaptation of early humans to earth surface proc- esses in East Asia is investigated for the first time in this study. Future investigations will provide further information that will increase our understanding of the linkage between early human behavior and landform processes in East Asia.
基金the National Natural Science Foundation of China(grant no.:41430532)the Alexander von Humboldt Stiftung/Foundation,Germany for support
文摘Due to large deserts on Earth surface a thorough understanding of climate change, landscape evolution and geomorphological processes having occurred in deserts is crucial for Earth System Science. The landscapes in deserts are, however, diverse and different over the globe with regard to their geomorphological nature, human activities and geological histories. In the last decades a great number of efforts have been put to the investigation of the initial timing of the occurrence of arid climate, e. g. in northwestern China. Silty sediments in the downwind directions have been used to deduce the histories of deserts. In general, there is a lack of knowledge about processes and landscapes in Chinese drylands between the initial Miocene silt sedimentation at desert margins and the late Quaternary multiple occurrences of wetter climate with assumed large lakes in many of the deserts in northern China. The geomorphological concept of three primary triggering factors, i.e., the sediment supply, sediment availability and transport capacity of wind, and additionally the underground geology need to be fully considered for a better understanding of the environmental histories of sand seas which should not be viewed as equivalent for deserts because sand seas cover between 〈 1% and ca. 45% of the desert areas in various continents dependent on a complex interaction between various processes of both exogenous and endogenous origins.