Desalination is emerging as a promising alternative among various technologies to resolve water shortage. However, desalination requires a sufficient energy and cooling device and therefore poses limitations for its i...Desalination is emerging as a promising alternative among various technologies to resolve water shortage. However, desalination requires a sufficient energy and cooling device and therefore poses limitations for its installation and application. In particular, many countries suffering water deficits are economically underdeveloped and cannot afford the technology. As this technology, which changes seawater into freshwater, has little environmental impact, developed countries will need to assist less developed countries to introduce this technology as a humanitarian effort. This will help reduce the number of countries that have experienced difficulty with development.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains cha...Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains challenging.Here,for the first time,we use the stronger electronegativity of a rare‐Earth yttrium ion(Y^(3+))to induce in situ NiCo‐layered double‐hydroxide nanosheets from NiCo foam(NCF)treated by a dielectric barrier discharge plasma NCF(PNCF),and then obtain nitrogen‐doped YNiCo phosphide(N‐YNiCoP/PNCF)after the phosphating process using radiofrequency plasma in nitrogen.The obtained NYNiCoP/PNCF has a large specific surface area,rich heterointerfaces,and an optimized electronic structure,inducing high electrocatalytic activity in HER(331mV vs.2000mA cm^(−2))and OER(464mV vs.2000mA cm^(−2))reactions in 1MKOH electrolyte.X‐ray absorption spectroscopy and density functional theory quantum chemistry calculations reveal that the coordination number of CoNi decreased with the incorporation of Y atoms,which induce much shorter bonds of Ni and Co ions and promote long‐term stability of N‐YNiCoP in HER and OER under the simulated industrial conditions.Meanwhile,the CoN‐YP_(5)heterointerface formed by plasma N‐doping is the active center for overall water splitting.This work expands the applications of rare‐Earth elements in engineering bifunctional electrocatalysts and provides a new avenue for designing highperformance transition‐metal‐based catalysts in the renewable energy field.展开更多
Through the use of a survey and statistical methods, this study explores the effects and interventions of handheld Tai Chi water resistance fitness balls on the elderly with Parkinson’s disease. Firstly, a questionna...Through the use of a survey and statistical methods, this study explores the effects and interventions of handheld Tai Chi water resistance fitness balls on the elderly with Parkinson’s disease. Firstly, a questionnaire on exercise compliance for patients with Parkinson’s disease was developed, and its reliability and validity were tested. Then, a survey was conducted to investigate the current status of exercise compliance among Parkinson’s disease patients, including general information, scoring status, and single and multiple factor analyses of influencing factors [1]. The results of the study show that through qualitative research, the dimensions and item pools of the questionnaire were initially constructed, and the reliability analysis of the questionnaire was conducted through Delphi expert consultation, with favorable results in terms of its reliability and validity [2]. Regarding the current status of exercise compliance among Parkinson’s disease patients, the study found that the level of exercise compliance needs improvement, and there are significant differences in exercise compliance levels among patients under different circumstances. Finally, the research results were discussed and conclusions were drawn. The innovation of this study lies in the development of a questionnaire on exercise compliance for patients with Parkinson’s disease and the preliminary qualitative research and Delphi expert consultation conducted on it, providing new ideas and methods for the study of exercise compliance. However, the study also has limitations as it did not examine the effects of other interventions on Parkinson’s disease, so further research should be conducted [3].展开更多
The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around...The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.展开更多
Developing earth-abundant-electrocatalysts for hydrogen evolution reaction is one of the promising ways to achieve efficient water-splitting for hydrogen production(a clean chemical fuel).This paper reviews the activi...Developing earth-abundant-electrocatalysts for hydrogen evolution reaction is one of the promising ways to achieve efficient water-splitting for hydrogen production(a clean chemical fuel).This paper reviews the activity,stability and durability for hydrogen evolution reaction in alkaline medium of different types of recently reported potential electrocatalysts such as Ni,Co,NiCo,Fe,Cu,W,Mo,Se,Mn.Zn,V,and metal free based earth-abundant-electrocatalysts.Further,this paper reviews the strategies used to achieve the remarkably low overpotential(including r/i0:<35mV),high long term stability(including^:100 h)and high durability(including>5000 cycles)of potential earth-abundant-electrocatalysts for hydrogen evolution reaction in alkaline medium and those are better or well comparable with the state-of-the-art,noble,Pt/C electrocatalyst.Finally,this paper summarizes the efficient strategies such as preparing porous structured materials,preparing nanostructured materials with superaerophobic surface,preparing nanostructured materials,preparing carbon composites/integrating electrocatalysts with carbon,preparing amorphous materials,preparing materials w让h oxygen vacancies/defects,preparing metal chalcogenides,preparing bimetallic/multi-metallic materials,doping metals or heteroatoms,preparing electrocatalysts with core-shell structure,decorating electrocatalysts with amines,preparing homojunction/heterojunction structured materials,preparing hollow structured materials,and preparing boronrich surface to enhance the activity,stability,and durability for HER.展开更多
Accurate species identification is a key component of biodiversity research.DNA barcoding is an effective molecular method used for fish species identification.We aimed to study the DNA barcoding of fish in Zhoushan c...Accurate species identification is a key component of biodiversity research.DNA barcoding is an effective molecular method used for fish species identification.We aimed to study the DNA barcoding of fish in Zhoushan coastal waters,explore the differences and applicability of two gene fragments(12S rRNA and COI)of DNA barcoding in fish species identification,and established a comprehensive fish barcoding reference database.Two hundred and eighty-seven captured fish samples from Zhoushan coastal waters were identified using morphological characteristics and DNA barcoding.A total of 26412S rRNA sequences(belonging to eight orders,31 families,55 genera,and 66 species)and 188 COI sequences(belonging to seven orders,30 families,48 genera,and 58 species)were obtained.The lengths of the 12S rRNA sequences ranged from 165 to 178 bp,and the guanine-cytosine(GC)content was 45.37%.The average 12S rRNA interspecific and intraspecific genetic distances(K2P)were 0.10%and 26.66%,respectively.The length of the COI sequence ranged 574–655 bp,and the content of GC was 45.97%.The average 12S rRNA interspecific and intraspecific genetic distances(K2P)were 0.16%and 27.45%,respectively.The minimum interspecific genetic distances of 12S rRNA and COI(1.23%and 1.86%)were both greater than their maximum intraspecific genetic distances(2.42%and 8.66%).Three molecular analyses(NJ tree,ABGD,and GMYC)were performed to accurately identify and delineate species.Clustering errors occurred when the 12S rRNA sequences were delimited using the NJ tree method,and the delimitation results of ABGD and GMYC are consistent with the final species identification results.Our results demonstrate that DNA barcoding based on 12S rRNA and COI can be used as an effective tool for fish species identification,and 12S rRNA has good application prospects in the environmental DNA(eDNA)metabarcoding of marine fish.展开更多
After treated with low concentration of La^3 + , the rate of producing active oxygen free radical, the relative permeability of cell membrane, the contents of bivalent iron ion in wheat seedling leaves under water st...After treated with low concentration of La^3 + , the rate of producing active oxygen free radical, the relative permeability of cell membrane, the contents of bivalent iron ion in wheat seedling leaves under water stress were determined. The results show that in wheat seedling leaves, feasible concentrations of La^3 + decreases the accumulation of active oxygen free radical, inhibits the increase of the relative permeability of cell membrane, reduces the content of peroxidation product MDA of membrane lipid, and prevents the plant cell producing more bivalent iron ion which can catalyzed the reaction of Haber-weiss and Fenton to produce more superoxide anion. In addition, purified plasma membrane was isolated by aqueous two-phase partitioning from wheat seedling leaves. The reduction rate of Fe(CN)6^3- by purified plasma membrane in La^3+ -treated wheat seedling leaves is different from those in the absence of La^3+ under water stress. The changing trend of the redox activity to La^3+ is similar to that of the content of Fe^2+ . The results reveal that extraneous La^3+ can alleviate the damages of cell membrane caused by water stress via promoting the activity of redox system and the ability of eliminating ROS in wheat seedling leaves.展开更多
Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating w...Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of (()^(17)O-NMR) for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.展开更多
t Taking the M2 wave as calibration signals, we extract the phase shifts of the water level relative to the Earth tide in the Zhouzhi well by utilizing the cross-correlation function. And we further obtain the apparen...t Taking the M2 wave as calibration signals, we extract the phase shifts of the water level relative to the Earth tide in the Zhouzhi well by utilizing the cross-correlation function. And we further obtain the apparent permeability variation in the aquifer of the Zhouzhi well in 2008. Comparison with the commonly used tidal analysis software Baytap-G shows that phase shifts obtained by cross-correlation function are more stable. The resulting apparent permeability of the Zhouzhi well aquifer fluctuates with time, indicating it is a dynamically controlled parameter. The 2008 Wenchuan earthquake caused the apparent permeability increasing drastically, which is interpreted as the combination effects of effective stress changes and the barriers removing in the flow channel due to seismic wave pressure pulse. After the Wenchuan earthquake, the effective stress began to recover and the impurities deposited gradually, causing the apparent permeability to decrease a month later and almost recover to the pre-earthquake level in six months.展开更多
The 14 stable rare earth element(REE) concentrations and distribution patterns were investigated for surface waters(n=51),soils(n=52) and sediments(n=42) from the tropical Terengganu River basin,Malaysia.The chondrite...The 14 stable rare earth element(REE) concentrations and distribution patterns were investigated for surface waters(n=51),soils(n=52) and sediments(n=42) from the tropical Terengganu River basin,Malaysia.The chondrite normalized REE patterns of soils developed on four geological units showed enrichment of LREE,a pronounced negative Eu,and depletion of HREE with an enrichment order granite>>metasedimentary>alluvium>volcanic.The REE patterns in sediments reflected the soil REE patterns with an ove...展开更多
Tuning the electronic structure of the electrocatalysts for oxygen evolution reaction(OER)is a promising way to achieve efficient alkaline water splitting for clean energy production(H2).At first,this paper introduces...Tuning the electronic structure of the electrocatalysts for oxygen evolution reaction(OER)is a promising way to achieve efficient alkaline water splitting for clean energy production(H2).At first,this paper introduces the significance of the tuning of electronic structure,where modifying the electronic structure of the electrocatalysts could generate active sites having optimal adsorption energy with OER intermediates,and that could diminish the energy barrier for OER,and that could improve the activity for OER.Later,this paper reviews the tuning of electronic structure along with catalytic performances,synthetic methodologies,chemical properties,and DFT calculations on various nanostructured earth-abundant electrocatalysts for OER in alkaline environment.Further,this review discusses the tuning of the electronic structure of the several nanostructured earth-abundant electrocatalysts including oxide,(oxy)hydroxide,layered double hydroxide,alloy,metal phosphide/phosphate,nitride,sulfide,selenide,carbon containing materials,MOF,core-shell/hetero/hollow structured materials,and materials with vacancies/defects for OER in alkaline environment(including activity:overpotential(η)of ≤200 mV at10 m A cm^(-2);stability:≥100 h;durability:≥5000 cycles).Then,this review discusses the robust stability of the electrocatalysts for OER towards practical application.Moreover,this review discusses the in situ formation of thin layer on the catalyst surface during OER.In addition,this review discusses the influence of the adsorption energy of the OER intermediates on OER performance of the catalysts.Finally,this review summarizes the various promising strategies for tuning the electronic structure of the electrocatalysts to achieve enhanced performance for OER in alkaline environment.展开更多
This work represents the extraction of oil with high free fatty acid content from spent bleaching earth using sub-critical water technology as a greener production pathway. The extraction efficiencies under different ...This work represents the extraction of oil with high free fatty acid content from spent bleaching earth using sub-critical water technology as a greener production pathway. The extraction efficiencies under different conditions were investigated. The studied parameters include temperatures in the range of 180 to 270°C, the feed to solventfeed-to-solvent (in this case water) ratio (1:1, 1:2, 1:3, 1:4 and 1:5) and extraction times in the range of 5-60 minutes. The results showed that the optimum temperature, feed to solventfeed-to-solvent ratio, and extraction time were 270°C, 1:3, and 20 minutes, respectively. In another experiment, the extracted free fatty acids were converted into mono-, di-, and triglycerides through esterification with glycerol to increase the value added of the extracted products. The kinetics of the extraction process was found to be corresponding to an irreversible consecutive unimolecular-type first order reaction, consisting of the extraction step followed by the decomposition reaction step. Both reaction rates of extraction and decomposition were estimated using the reaction rate equations utilizing the nonlinear regression method. The apparent activation energy was calculated to be 46.1 kJ·mol-1. This result indicates a diffusion controlled reaction. For more exploration and deep understanding of the extraction mechanism, other thermodynamic parameters were also calculated and analyzed including,ΔH#, ΔS#, and ΔG# of the extraction step.展开更多
A novel fiber Bragg grating(FBG)sensor with three-dimensional(3D)fused deposition modeling(FDM)approach is proposed for effective stress measurement in soil mass.The three-diaphragm structure design is developed to me...A novel fiber Bragg grating(FBG)sensor with three-dimensional(3D)fused deposition modeling(FDM)approach is proposed for effective stress measurement in soil mass.The three-diaphragm structure design is developed to measure earth and water pressures simultaneously.The proposed transducer has advantages of small size,high sensitivity,low cost,immunity to electromagnetic interference and rapid prototyping.The working principle,design parameters,and manufacturing details are discussed.The proposed transducer was calibrated for earth and water pressures measurement by using weights and a specially designed pressure chamber,respectively.The calibration results showed that the wavelength of the transducer was proportional to the applied pressure.The sensitivity coefficients of the earth and water pressures were 12.633 nm/MPa and 6.282 nm/MPa,respectively.Repeated tests and error analysis demonstrated the excellent stability and accuracy of the earth and water pressure measurements.The performance of the proposed transducer was further verified by a model experimental test and numerical analysis,which indicated that the proposed transducer has great potential for practical applications.展开更多
文摘Desalination is emerging as a promising alternative among various technologies to resolve water shortage. However, desalination requires a sufficient energy and cooling device and therefore poses limitations for its installation and application. In particular, many countries suffering water deficits are economically underdeveloped and cannot afford the technology. As this technology, which changes seawater into freshwater, has little environmental impact, developed countries will need to assist less developed countries to introduce this technology as a humanitarian effort. This will help reduce the number of countries that have experienced difficulty with development.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
基金National Natural Science Foundation of China,Grant/Award Number:52177162the Natural Science Foundation of Zhejiang Province,Grant/Award Numbers:LZ22E070003,LQ22E020006+1 种基金the Funding Project for Academic/Technical Leaders of Jiangxi Province,Grant/Award Number:20225BCJ22003the Natural Science Foundation of Jiangxi Province,Grant/Award Number:20212ACB211001。
文摘Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains challenging.Here,for the first time,we use the stronger electronegativity of a rare‐Earth yttrium ion(Y^(3+))to induce in situ NiCo‐layered double‐hydroxide nanosheets from NiCo foam(NCF)treated by a dielectric barrier discharge plasma NCF(PNCF),and then obtain nitrogen‐doped YNiCo phosphide(N‐YNiCoP/PNCF)after the phosphating process using radiofrequency plasma in nitrogen.The obtained NYNiCoP/PNCF has a large specific surface area,rich heterointerfaces,and an optimized electronic structure,inducing high electrocatalytic activity in HER(331mV vs.2000mA cm^(−2))and OER(464mV vs.2000mA cm^(−2))reactions in 1MKOH electrolyte.X‐ray absorption spectroscopy and density functional theory quantum chemistry calculations reveal that the coordination number of CoNi decreased with the incorporation of Y atoms,which induce much shorter bonds of Ni and Co ions and promote long‐term stability of N‐YNiCoP in HER and OER under the simulated industrial conditions.Meanwhile,the CoN‐YP_(5)heterointerface formed by plasma N‐doping is the active center for overall water splitting.This work expands the applications of rare‐Earth elements in engineering bifunctional electrocatalysts and provides a new avenue for designing highperformance transition‐metal‐based catalysts in the renewable energy field.
文摘Through the use of a survey and statistical methods, this study explores the effects and interventions of handheld Tai Chi water resistance fitness balls on the elderly with Parkinson’s disease. Firstly, a questionnaire on exercise compliance for patients with Parkinson’s disease was developed, and its reliability and validity were tested. Then, a survey was conducted to investigate the current status of exercise compliance among Parkinson’s disease patients, including general information, scoring status, and single and multiple factor analyses of influencing factors [1]. The results of the study show that through qualitative research, the dimensions and item pools of the questionnaire were initially constructed, and the reliability analysis of the questionnaire was conducted through Delphi expert consultation, with favorable results in terms of its reliability and validity [2]. Regarding the current status of exercise compliance among Parkinson’s disease patients, the study found that the level of exercise compliance needs improvement, and there are significant differences in exercise compliance levels among patients under different circumstances. Finally, the research results were discussed and conclusions were drawn. The innovation of this study lies in the development of a questionnaire on exercise compliance for patients with Parkinson’s disease and the preliminary qualitative research and Delphi expert consultation conducted on it, providing new ideas and methods for the study of exercise compliance. However, the study also has limitations as it did not examine the effects of other interventions on Parkinson’s disease, so further research should be conducted [3].
文摘The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.
基金supported by the National Natural Science Foundation of Chinathe Innovative Research Team in the University+4 种基金the Program for Changjiang Scholarsthe Fundamental Research Funds for the Central Universitiesthe longterm subsidy mechanism from the Ministry of Financethe Ministry of Education of People’s Republic of China (PRC)the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Reference No. PDF/2017/000015)
文摘Developing earth-abundant-electrocatalysts for hydrogen evolution reaction is one of the promising ways to achieve efficient water-splitting for hydrogen production(a clean chemical fuel).This paper reviews the activity,stability and durability for hydrogen evolution reaction in alkaline medium of different types of recently reported potential electrocatalysts such as Ni,Co,NiCo,Fe,Cu,W,Mo,Se,Mn.Zn,V,and metal free based earth-abundant-electrocatalysts.Further,this paper reviews the strategies used to achieve the remarkably low overpotential(including r/i0:<35mV),high long term stability(including^:100 h)and high durability(including>5000 cycles)of potential earth-abundant-electrocatalysts for hydrogen evolution reaction in alkaline medium and those are better or well comparable with the state-of-the-art,noble,Pt/C electrocatalyst.Finally,this paper summarizes the efficient strategies such as preparing porous structured materials,preparing nanostructured materials with superaerophobic surface,preparing nanostructured materials,preparing carbon composites/integrating electrocatalysts with carbon,preparing amorphous materials,preparing materials w让h oxygen vacancies/defects,preparing metal chalcogenides,preparing bimetallic/multi-metallic materials,doping metals or heteroatoms,preparing electrocatalysts with core-shell structure,decorating electrocatalysts with amines,preparing homojunction/heterojunction structured materials,preparing hollow structured materials,and preparing boronrich surface to enhance the activity,stability,and durability for HER.
基金Supported by the Zhejiang Provincial Key Research and Development Program (No.2021C02047)。
文摘Accurate species identification is a key component of biodiversity research.DNA barcoding is an effective molecular method used for fish species identification.We aimed to study the DNA barcoding of fish in Zhoushan coastal waters,explore the differences and applicability of two gene fragments(12S rRNA and COI)of DNA barcoding in fish species identification,and established a comprehensive fish barcoding reference database.Two hundred and eighty-seven captured fish samples from Zhoushan coastal waters were identified using morphological characteristics and DNA barcoding.A total of 26412S rRNA sequences(belonging to eight orders,31 families,55 genera,and 66 species)and 188 COI sequences(belonging to seven orders,30 families,48 genera,and 58 species)were obtained.The lengths of the 12S rRNA sequences ranged from 165 to 178 bp,and the guanine-cytosine(GC)content was 45.37%.The average 12S rRNA interspecific and intraspecific genetic distances(K2P)were 0.10%and 26.66%,respectively.The length of the COI sequence ranged 574–655 bp,and the content of GC was 45.97%.The average 12S rRNA interspecific and intraspecific genetic distances(K2P)were 0.16%and 27.45%,respectively.The minimum interspecific genetic distances of 12S rRNA and COI(1.23%and 1.86%)were both greater than their maximum intraspecific genetic distances(2.42%and 8.66%).Three molecular analyses(NJ tree,ABGD,and GMYC)were performed to accurately identify and delineate species.Clustering errors occurred when the 12S rRNA sequences were delimited using the NJ tree method,and the delimitation results of ABGD and GMYC are consistent with the final species identification results.Our results demonstrate that DNA barcoding based on 12S rRNA and COI can be used as an effective tool for fish species identification,and 12S rRNA has good application prospects in the environmental DNA(eDNA)metabarcoding of marine fish.
基金Project supported bythe National Natural Science Foundation of China (30270744) and 863 Program(2002AA241121)
文摘After treated with low concentration of La^3 + , the rate of producing active oxygen free radical, the relative permeability of cell membrane, the contents of bivalent iron ion in wheat seedling leaves under water stress were determined. The results show that in wheat seedling leaves, feasible concentrations of La^3 + decreases the accumulation of active oxygen free radical, inhibits the increase of the relative permeability of cell membrane, reduces the content of peroxidation product MDA of membrane lipid, and prevents the plant cell producing more bivalent iron ion which can catalyzed the reaction of Haber-weiss and Fenton to produce more superoxide anion. In addition, purified plasma membrane was isolated by aqueous two-phase partitioning from wheat seedling leaves. The reduction rate of Fe(CN)6^3- by purified plasma membrane in La^3+ -treated wheat seedling leaves is different from those in the absence of La^3+ under water stress. The changing trend of the redox activity to La^3+ is similar to that of the content of Fe^2+ . The results reveal that extraneous La^3+ can alleviate the damages of cell membrane caused by water stress via promoting the activity of redox system and the ability of eliminating ROS in wheat seedling leaves.
文摘Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of (()^(17)O-NMR) for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.
基金supported by the National Natural Science Foundation of China under grant Nos.40674024 and 41040036
文摘t Taking the M2 wave as calibration signals, we extract the phase shifts of the water level relative to the Earth tide in the Zhouzhi well by utilizing the cross-correlation function. And we further obtain the apparent permeability variation in the aquifer of the Zhouzhi well in 2008. Comparison with the commonly used tidal analysis software Baytap-G shows that phase shifts obtained by cross-correlation function are more stable. The resulting apparent permeability of the Zhouzhi well aquifer fluctuates with time, indicating it is a dynamically controlled parameter. The 2008 Wenchuan earthquake caused the apparent permeability increasing drastically, which is interpreted as the combination effects of effective stress changes and the barriers removing in the flow channel due to seismic wave pressure pulse. After the Wenchuan earthquake, the effective stress began to recover and the impurities deposited gradually, causing the apparent permeability to decrease a month later and almost recover to the pre-earthquake level in six months.
基金supported by INOS, University Malaysian Terengganu
文摘The 14 stable rare earth element(REE) concentrations and distribution patterns were investigated for surface waters(n=51),soils(n=52) and sediments(n=42) from the tropical Terengganu River basin,Malaysia.The chondrite normalized REE patterns of soils developed on four geological units showed enrichment of LREE,a pronounced negative Eu,and depletion of HREE with an enrichment order granite>>metasedimentary>alluvium>volcanic.The REE patterns in sediments reflected the soil REE patterns with an ove...
基金supported by the King Abdullah University of Science and Technology(KAUST)。
文摘Tuning the electronic structure of the electrocatalysts for oxygen evolution reaction(OER)is a promising way to achieve efficient alkaline water splitting for clean energy production(H2).At first,this paper introduces the significance of the tuning of electronic structure,where modifying the electronic structure of the electrocatalysts could generate active sites having optimal adsorption energy with OER intermediates,and that could diminish the energy barrier for OER,and that could improve the activity for OER.Later,this paper reviews the tuning of electronic structure along with catalytic performances,synthetic methodologies,chemical properties,and DFT calculations on various nanostructured earth-abundant electrocatalysts for OER in alkaline environment.Further,this review discusses the tuning of the electronic structure of the several nanostructured earth-abundant electrocatalysts including oxide,(oxy)hydroxide,layered double hydroxide,alloy,metal phosphide/phosphate,nitride,sulfide,selenide,carbon containing materials,MOF,core-shell/hetero/hollow structured materials,and materials with vacancies/defects for OER in alkaline environment(including activity:overpotential(η)of ≤200 mV at10 m A cm^(-2);stability:≥100 h;durability:≥5000 cycles).Then,this review discusses the robust stability of the electrocatalysts for OER towards practical application.Moreover,this review discusses the in situ formation of thin layer on the catalyst surface during OER.In addition,this review discusses the influence of the adsorption energy of the OER intermediates on OER performance of the catalysts.Finally,this review summarizes the various promising strategies for tuning the electronic structure of the electrocatalysts to achieve enhanced performance for OER in alkaline environment.
文摘This work represents the extraction of oil with high free fatty acid content from spent bleaching earth using sub-critical water technology as a greener production pathway. The extraction efficiencies under different conditions were investigated. The studied parameters include temperatures in the range of 180 to 270°C, the feed to solventfeed-to-solvent (in this case water) ratio (1:1, 1:2, 1:3, 1:4 and 1:5) and extraction times in the range of 5-60 minutes. The results showed that the optimum temperature, feed to solventfeed-to-solvent ratio, and extraction time were 270°C, 1:3, and 20 minutes, respectively. In another experiment, the extracted free fatty acids were converted into mono-, di-, and triglycerides through esterification with glycerol to increase the value added of the extracted products. The kinetics of the extraction process was found to be corresponding to an irreversible consecutive unimolecular-type first order reaction, consisting of the extraction step followed by the decomposition reaction step. Both reaction rates of extraction and decomposition were estimated using the reaction rate equations utilizing the nonlinear regression method. The apparent activation energy was calculated to be 46.1 kJ·mol-1. This result indicates a diffusion controlled reaction. For more exploration and deep understanding of the extraction mechanism, other thermodynamic parameters were also calculated and analyzed including,ΔH#, ΔS#, and ΔG# of the extraction step.
基金funding support from the National Natural Science Foundation of China(Grant Nos.41972271 and 42177127)Sanya Science and Education Innovation Park of Wuhan University of Technology(Grant No.2020KF0007)。
文摘A novel fiber Bragg grating(FBG)sensor with three-dimensional(3D)fused deposition modeling(FDM)approach is proposed for effective stress measurement in soil mass.The three-diaphragm structure design is developed to measure earth and water pressures simultaneously.The proposed transducer has advantages of small size,high sensitivity,low cost,immunity to electromagnetic interference and rapid prototyping.The working principle,design parameters,and manufacturing details are discussed.The proposed transducer was calibrated for earth and water pressures measurement by using weights and a specially designed pressure chamber,respectively.The calibration results showed that the wavelength of the transducer was proportional to the applied pressure.The sensitivity coefficients of the earth and water pressures were 12.633 nm/MPa and 6.282 nm/MPa,respectively.Repeated tests and error analysis demonstrated the excellent stability and accuracy of the earth and water pressure measurements.The performance of the proposed transducer was further verified by a model experimental test and numerical analysis,which indicated that the proposed transducer has great potential for practical applications.