期刊文献+
共找到15,919篇文章
< 1 2 250 >
每页显示 20 50 100
Achieving Cooler Soil as an Effective Heat Sink for Earth-to-Air Heat Exchanger (EAHE) Cooling Technology in Malaysia Tropical Climate
1
作者 Aliyah Nur Zafirah Sanusi Aidil Azlan Ahmad Zamri 《Natural Resources》 2014年第13期804-809,共6页
This research is intended to explore the capacity of Malaysia soil in becoming a more effective heat sink for the application of Earth-to-Air Heat Exchanger (EAHE) Cooling Technology in Malaysia. EAHE Cooling Technolo... This research is intended to explore the capacity of Malaysia soil in becoming a more effective heat sink for the application of Earth-to-Air Heat Exchanger (EAHE) Cooling Technology in Malaysia. EAHE Cooling Technology consists of buried pipes underground where the ambient air is channeled through from the pipe inlet and produces cooler air at its outlet. Within the buried pipes, heat exchange process occurs between the air and the soil that surrounding the pipe. This building cooling technology has been applied in many countries, mostly in temperate or hot and arid climate where the diurnal temperature is large. However, minimal resources were found on the study of EAHE application to buildings in Malaysia, hence there is room to develop. A parametric study on EAHE cooling application in Malaysia was done through field experiment and concluded that among many parameters affecting the technology performance, the soil temperature which surrounded the pipe was the most influential factor. The study recommended to further reduce the soil temperature to achieve a cooler outlet temperature. In response to that, this research conducted a parametric study of soil temperature under three different soil surface conditions: bare, shaded with timber pallettes and insulated with used tyres at 1.0 m and 1.5 m underground. The data was logged for a month and the result has shown significant reduction in the soil temperature underground below the shaded and insulated soil surface as compared to below bare soil surface condition. The insulated soil surface produced the best result where the soil temperature was reduced up to 26.9°C. The main contribution of this paper is to highlight that the soil surface treatment can be used to reduce solar heat gain within the soil underground and thus improving the performance of EAHE Cooling Technology particularly for the application in Malaysia tropical climate. 展开更多
关键词 Ground COOLING Green Technology earth-to-air heat exchanger Cooled SOIL
下载PDF
Experimental evaluation of a“U”type earth-to-air heat exchanger planned for narrow installation space in warm climatic conditions
2
作者 Ricardo Molina-Rodea Jorge Alejandro Wong-Loya +1 位作者 Hugo Pocasangre-Chávez Jennifer Reyna-Guillén 《Energy and Built Environment》 EI 2024年第5期772-786,共15页
The thermal performance of a“U”type earth-to-air heat exchanger is presented in this experimental study.The device has a serial-connected vertical configuration.The wells where tubes were installed have a depth of f... The thermal performance of a“U”type earth-to-air heat exchanger is presented in this experimental study.The device has a serial-connected vertical configuration.The wells where tubes were installed have a depth of fewer than 3 m and are separated every 1.5 m,using an installation area of 3m2.The experimentation was carried out in March in Morelos,Mexico when the environmental temperature reaches 35℃ during the day.The performance of the device was measured and compared to the requirements of an office for cooling purposes within a university campus to reproduce the space restrictions found in urbanized areas.By using a small land surface,it is feasible for urbanized areas.The air temperature inside the“U”type earth-to-air heat exchanger,the surrounding soil temperature,the airspeed,and the power consumed by the fan were measured.The air temperature and the fan’s power consumption data were obtained by modifying the airspeed in four constant values,from 1.3 m/s to 6.6 m/s.Results show that the device evaluated in this work has adequate thermal performance for cooling purposes compared to the requirements of an office.A decrease in air temperature was recorded in a range of 5.1℃ to 9.4℃.Over 70%of the total temperature difference was reached in the first well,where the average soil thermal disturbance at 5 cm was 2.8℃.The device achieved a maximum COP of 12.8 and a maximum effectiveness of 88.4%.With these results,it is concluded that the system is suitable for cooling purposes in areas with space restrictions.This work is novel since the dimensions available for installation in urbanized areas are considered and compared with the thermal requirements of an office.In addition to the fact that there are no published works with vertical heat exchangers connected in series. 展开更多
关键词 Low temperature geothermal energy Thermal performance Vertical heat exchangers Space restrictions in urbanized areas Geothermal direct uses
原文传递
Cooling performance of earth-to-air heat exchangers applied to a poultry barn in semi-desert areas of south Iraq 被引量:2
3
作者 Wasseem Morshed Lorenzo Leso +3 位作者 Leonardo Conti Giuseppe Rossi Stefano Simonini Matteo Barbari 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第3期47-53,共7页
Earth-to-air heat exchangers(EAHE)can reduce the energy consumption required for heating and cooling of buildings.The composition and the thermal characteristics of the soil influence the heat exchange capacity,and th... Earth-to-air heat exchangers(EAHE)can reduce the energy consumption required for heating and cooling of buildings.The composition and the thermal characteristics of the soil influence the heat exchange capacity,and the soil moisture can furthermore affect thermal performance of EAHE.The aim of this study was to compare the thermal performance of EAHE in dry and artificially wetted soil.Tests were carried out in the Basra Province(Iraq),in a semi-desert area.Two experimental EAHE were built in a poultry barn and tested from June 2013 to September 2013.The pipe exchangers were buried at 2 m deep.One heat exchanger operated in dry soil(DE),while the other one operated in artificially wetted soil(WE).In the WE system,a drip tubing placed 10 cm above the air pipe wetted the soil around the exchanger.Air temperatures at the inlet and at the outlet of both the exchangers as well as soil temperature at 2 m deep were continuously monitored.The experimental results confirmed that wetting the soil around EAHE improves the general heat exchange efficiency.The coefficient of cooling performance(COP)of the earth-to-air heat exchangers system was evaluated on the basis of the ratio between the heat removed from the air or added to the air and the energy input.During the day,with an average COP of 6.41,the WE system cooled the air more than the DE system,which reported a value of 5.07.On average,in the hottest hours of the day,the outlet temperature of the WE was 37.35℃ while in the DE it was 38.91℃.Moreover,during the nighttime,the WE system warmed the air more than the DE system. 展开更多
关键词 earth-to-air heat exchangers thermal performance COOLING artificially wetted soil poultry barn heat stress
原文传递
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
4
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow MULTI-COMPONENT heat and mass transfer
下载PDF
Topology Optimization of Two Fluid Heat Transfer Problems for Heat Exchanger Design
5
作者 Kun Yan Yunyu Wang Jun Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1949-1974,共26页
Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method uti... Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends,ensuring separation between the two fluid domains.Additionally,a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient.Furthermore,a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers.This program leverages parallel computing,significantly reducing the time required for the topology optimization process.To enhance computational speed and reduce the number of constraint conditions,we replaced the conventional pressure drop constraint condition in the optimization problem with a pressure inlet/outlet boundary condition.The 3D optimization results demonstrate the characteristic features of a surface structure,providing valuable guidance for designing heat exchangers that achieve high heat exchange efficiency while minimizing excessive pressure loss.At the same time,a new structure appears in large-scale topology optimization,which proves the effectiveness and stability of the topology optimization program written in this paper in large-scale calculation. 展开更多
关键词 Topology optimization two fluid heat exchanger OPENFOAM large scale
下载PDF
Combining reinforcement learning with mathematical programming:An approach for optimal design of heat exchanger networks
6
作者 Hui Tan Xiaodong Hong +4 位作者 Zuwei Liao Jingyuan Sun Yao Yang Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期63-71,共9页
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea... Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales. 展开更多
关键词 heat exchanger network Reinforcement learning Mathematical programming Process design
下载PDF
Performance analysis of deep borehole heat exchangers for decarbonization of heating systems
7
作者 Andreas E.D.Lund 《Deep Underground Science and Engineering》 2024年第3期349-357,共9页
Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her... Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads. 展开更多
关键词 clean energy deep borehole exchangers energy transition geothermal heat ground-coupled heat pump
下载PDF
Optimization of Finned-Tube Heat Exchanger in a Gravity-Assisted Separated Heat Pipe
8
作者 Yangyiming Rong Weitao Su +3 位作者 Shuai Wang Bowen Du Jianjian Wei Shaozhi Zhang 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1209-1229,共21页
Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working i... Finned-tube heat exchanger(FTHE)is often used as an evaporator in commercial products of separated heat pipe(SHP).The working conditions of FTHE in gravity-assisted SHP are significantly different from those working in refrigerators and air conditioners.Although FTHE is widely used in commercial products of SHP,previous research on its characteristics is very limited.In this paper,a mathematical model for a SHP with FTHE as the evaporator and plate heat exchanger as the condenser is established and verified with experiments.Parametric analyses are carried out to investigate the influences of evaporator design parameters:air inlet velocity,number of tube rows,tube diameter,and fin pitch.With the increasing of air velocity,number of tube rows and tube diameter,and the decreasing of fin pitch,the heat transfer rate increases,while the energy efficiency ratio(EER)decreases monotonically.Using the total cost of the ten-year life cycle as the performance index,the structure parameters of the evaporator with a given heat transfer rate are optimized by the method of orthogonal experimental design.It is found that the total cost can differ as large as nearly ten times between groups.Among the three factors investigated,the number of tube rows has a significant impact on the total cost of the evaporator.With more tube rows,the total cost will be less.The impacts of fin pitch and tube diameter are insignificant.These results are of practical importance for the engineering design of FTHE in gravity-assisted SHP. 展开更多
关键词 Separated heat pipe finned-tube heat exchanger GRAVITY OPTIMIZATION
下载PDF
Numerical Studies on Thermal and Hydrodynamic Characteristics of LNG in Helically Coiled Tube-in-Tube Heat Exchangers
9
作者 Fayi Yan Xuejian Pei +1 位作者 He Lu Shuzhen Zong 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期287-304,共18页
As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natu... As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natural gas(LNG)as the working fluid inHCTT heat exchangers is rarely reported.In this paper,the characteristics of HCTT heat exchangers,in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube,are studied by numerical simulations.The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,the helical middle diameter,and the helical pitch.The results indicate that different initial flow velocities in the inner tube and the outer tube of the HCTT heat exchanger have little influence on the secondary flow of the fluid in the helical tubes,and the overall flow characteristics tend to be stable.The smaller helical middle diameter of the HCTT heat exchanger leads to the shorter fluid flow length,the smaller resistance along the tubes and the increase of initial pressure under the condition of constant inlet velocity,which promotes the occurrence of secondary flow.The axial flow of fluid promotes the destruction of heat transfer boundary layer and gains strength of the turbulence and heat transfer efficiency.With the increase of the helical pitch of the HCTT heat exchanger,the turbulent intensity and the heat transfer efficiency are also increased.Moreover,the improvement of the flow state of the HCTT exchanger in a longer helical pitch also enhances the heat exchange efficiency. 展开更多
关键词 HCTT heat exchanger LNG helically coil heat transfer coefficient pressure drop
下载PDF
Mathematical Modelling and Design of Helical Coil Heat Exchanger for Production of Hot Air for Fluidized Bed Dryer
10
作者 Iniubong James Uwa Uwem Ekwere Inyang Innocent Oseribho Oboh 《Advances in Chemical Engineering and Science》 CAS 2024年第3期125-136,共12页
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h... In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers. 展开更多
关键词 Helical Coil heat exchanger Fluidized Bed Dryer heat Transfer Output Air Temperature
下载PDF
Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers
11
作者 Fayi Yan He Lu Shijie Feng 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1493-1514,共22页
Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified... Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter. 展开更多
关键词 Liquefied natural gas numerical simulation vapor-liquid two-phase flow heat transfer helically coiled tube-intube heat exchanger
下载PDF
Performance Simulation of a Double Tube Heat Exchanger Based on Different Nanofluids by Aspen Plus
12
作者 Fawziea M.Hussien Atheer S.Hassoon Ghaidaa M.Ahmed 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期175-191,共17页
A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance ... A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid’s thermal conductivity.This research used engine oil containing alumina(Al_(2)O_(3))nanoparticles and copper oxide(CuO)to test whether or not the heat exchanger’s efficiency could be improved.To establish the most effective elements for heat transfer enhancement,the heat exchangers thermal performance was tested at 0.05%and 0.1%concentrations for Al_(2)O_(3)and CuO nanoparticles.The simulation results showed that the percentage increase in Nusselt number(Nu)for nanofluid at 0.05%particle concentration compared to pure oil was 9.71%for CuO nanofluids and 6.7%for Al_(2)O_(3)nanofluids.At 0.1%concentration,the enhancement percentage in Nu was approximately 23%for CuO and 18.67%for Al_(2)O_(3)nanofluids,respectively.At a concentration of 0.1%,CuO nanofluid increased the LMTD and overall heat transfer coefficient(U)by 7.24 and 5.91%respectively.Both the overall heat transfer coefficient(U)and the heat transfer coefficient(hn)for CuO nanofluid at a concentration of 0.1%increased by 5.91%and 10.68%,respectively.The effectiveness(εn)of a heat exchanger was increased by roughly 4.09%with the use of CuO nanofluid in comparison to Al_(2)O_(3)at a concentration of 0.1%.The amount of exergy destruction in DTHX goes down as Re and volume fractions go up.Moreover,at 0.05%and 0.1%nanoparticle concentrations,the percentage increase in dimensionless exergy is 10.55%and 13.08%,respectively.Finally,adding the CuO and Al_(2)O_(3)nanoparticles improved the thermal conductivity of the main fluid(oil),resulting in a considerable increase in the thermal performance and rate of heat transfer of a heat exchanger. 展开更多
关键词 NANOFLUID nusselt number exergy dimensionless exergy destruction double tube heat exchanger performance simulation aspen plus
下载PDF
Implementation of heat exchanger performance testing system of heat transfer and flow resistance 被引量:3
13
作者 操瑞兵 陈亚平 +2 位作者 吴嘉峰 董聪 盛艳军 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期46-51,共6页
A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, co... A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, compressed air, glycol water solution and water as the heating fluids, and air and water as the cooling fluids. The heat transfer performance testing of heat exchangers can be conducted not only for a conventional one heating fluid to one cooling fluid, but also for a compound air cooling heat exchanger with two or three heating fluids in parallel or in series. The control and measurement system is implemented based on a LabVIEW software platform, consisting of the data acquisition and process system, and the automotive operation and control system. By using advanced measuring instruments combined with sound computer software control, the testing system has characteristics of a compact structure, high accuracy, a wide range of testing scope and a friendly operation interface. The uncertainty of the total heat transfer coefficient K is less than 5%. The testing system provides a reliable performance testing platform for designing and developing new heat exchangers. 展开更多
关键词 heat exchanger heat transfer performance testing system LABVIEW
下载PDF
Analysis of secondary flow in shell-side channel of trisection helix heat exchangers 被引量:3
14
作者 王伟晗 陈亚平 +1 位作者 操瑞兵 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期426-430,共5页
The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid i... The flow characteristics of shell-side fluid in the tube-and-shell heat exchangers with trisection helical baffles with 35° inclined angles are numerically analyzed. The secondary flow distribution of the fluid in the shell-side channel is focused on. The results on meridian planes indicate that in the shell-side channel, the center part of fluid has an outward tendency because of the centrifugal force, and the peripheral region fluid has an inward tendency under the centripetal force. So in a spiral cycle, the fluid is divided into the upper and lower beams of streamlines, at the same time the Dean vortices are formed near the left baffle, and then the fluid turns to centripetal flow near the right baffle. Finally the two beams of streamlines merge in the main flow. The results of a number of parallel slices between two parallel baffles with the same sector in a swirl cycle also show the existence of the secondary flow and some backward flows at the V-gaps of the adjacent baffles. The secondary flows have a positive effect on mixing fluid by promoting the momentum and mass exchange between fluid particles near the tube wall and in the main stream, and thus they will enhance the heat transfer of the helix heat exchanger. 展开更多
关键词 trisection helix heat exchangers secondary flow Dean vortices heat transfer enhancement flow field analysis
下载PDF
Numerical simulation of heat transfer enhancement by strip-coil-baffles in tube-bundle for a tube-shell heat exchanger
15
作者 陈亚平 梅娜 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期81-85,共5页
A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vor... A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vortex flow in a heat exchanger. The numerical simulation on the flow and heat transfer characteristics for this new structure heat exchanger is conducted. The computational domain consists of two strip-coil sleeved tubes and two bare tubes oppositely placed at each comer of a square. The velocity and temperature fields in such strip-coil-baffled channel are simulated using FLUENT software. The effects of the strip-coil-baffles on heat transfer enhancement and flow resistance in relation to the Reynolds number are analyzed. The results show that this new structure bundle can enhance the heat transfer coefficient up to a range of 40% to 55% in comparison with a bare tube bundle; meanwhile, higher flow resistance is also accompanied. It is believe that the strip-coil- baffled heat exchanger should have promising applications in many industry fields. 展开更多
关键词 heat transfer enhancement strip-coil-baffle tube-shell heat exchanger vortex flow numerical simulation
下载PDF
Performance comparison of heat exchangers using sextant/trisection helical baffles and segmental ones 被引量:5
16
作者 Yaping Chen Hongling Tang +2 位作者 JiafengWu Huaduo Gu Shifan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第12期2892-2899,共8页
The shell side flow fields of both sextant and trisection helical baffle heat exchangers are presented on meridian and multilayer hexagon slices.It verifies that the performance of sextant schemes is better than those... The shell side flow fields of both sextant and trisection helical baffle heat exchangers are presented on meridian and multilayer hexagon slices.It verifies that the performance of sextant schemes is better than those of the other kinds of helical baffle heat exchangers.The main mechanisms are due to the restricted leakage flow in the minimized gaps with increased baffle number and by one row of tubes dampen the leakage flow in the circumferential overlapped area of the adjacent helical baffles.The performance features were simulated on two different angled sextant helical heat exchangers and each compared with two trisection ones of either identical helical pitch or identical incline angle.The results verified that the performances of helical heat exchangers are mainly determined by the helical pitch rather than the baffle incline angle.The average values of comprehensive index hoΔpo-1/3 of the trisection helical schemes T-24.1°and T-29.7°are correspondingly 3.47%and 3.34%lower than those of the sextant ones X-20°and X-25°with identical helical pitches.The comparison results show that the average values of shell side h.t.c.hoand comprehensive index hoΔpo-1/3 of the optimal dual helix sextant scheme DX30°are respectively 7.22%and 23.56%higher than those of the segment scheme S100. 展开更多
关键词 heat transfer Computational fluid dynamics Convection HELICAL BAFFLE heat exchangerS SEXTANT HELICAL baffles
下载PDF
Industrially Experimental Investigations and Development of the Curve-ROD Baffle Heat Exchanger 被引量:7
17
作者 严良文 吴金星 王志文 《Journal of Shanghai University(English Edition)》 CAS 2004年第3期337-341,共5页
The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In orde... The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In order to avoid the above defects, the ROD-baffle heat exchanger has been developed. However, its collocation of heat transfer tubes is conventionally in square, which leads to fewer heat transfer area per unit volume. Based on the ROD-baffle heat exchanger, a new type curve-ROD baffle has been developed, and an industrial investigation of the curve-ROD baffle heat exchanger with normal triangular collocation has been carried into execution. In this paper, two equations using the Reynolds number were acquired to predict the heat transfer coefficients of the shell-side and tube-side. The experimental results show that the shell-side heat transfer and pressure drop characteristics of the curve-ROD baffle heat exchanger are superior to those of the segmental baffle one. 展开更多
关键词 heat exchanger curve-ROD baffle heat transfer pressure drop experimental investigation.
下载PDF
Distribution performance of gas–liquid mixture in the shell side of spiral-wound heat exchangers 被引量:5
18
作者 Wenke Zheng Weihua Cai Yiqiang Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2284-2292,共9页
The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important paramete... The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important parameters as well as structural parameters which have prominent influences on flow distribution uniformity of SWHE shell side.In order to investigate the influences of these parameters,an experimental test system was built using water and air as mediums and a novel distributor named"tubes distributor"was designed.The effects of mass flow rate and the content of gas on two-phase distribution performance were analyzed,where the mass flow rate ranged from 28.4 to 171.9 kg·h-1 and the content of gas changed from 0.2 to 0.8,respectively.The results showed that the mixture mass flow rate considerably influenced the liquid distribution than that of gas phase and the larger mass flow rate exhibited the better distribution uniformity of two-phase flow.It was also found that the tubes distributor had the better two-phase uniformity when the content of gas was around 0.4.Tube diameter played an important role in the distribution of gas phase and slit width was more significant for the uniformity of liquid phase. 展开更多
关键词 Spiral-wound heat exchanger Gas–liquid MIXTURE MULTIPHASE flow DISTRIBUTION UNIFORMITY
下载PDF
Synthesis of flexible heat exchanger networks:A review 被引量:4
19
作者 Lixia Kang Yongzhong Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1485-1497,共13页
Dealing with uncertainty is one of practical issues in design and operation of heat exchanger networks(HENs),arising the problem of flexible HEN synthesis.This paper addresses the state-of-the-art methods for flexible... Dealing with uncertainty is one of practical issues in design and operation of heat exchanger networks(HENs),arising the problem of flexible HEN synthesis.This paper addresses the state-of-the-art methods for flexible HEN synthesis based on sensitivity analysis,resilience analysis,flexibility analysis and multiperiod synthesis techniques as well.Each of these methods is summarized by presenting their general procedures and recent developments on modeling,solving strategies and applications.Some current topics related to flexible process synthesis have been briefly presented to provide several future research possibilities. 展开更多
关键词 heat exchanger network Sensitivity ANALYSIS RESILIENCE ANALYSIS FLEXIBILITY ANALYSIS Multiperiod synthesis
下载PDF
Heat exchanger network synthesis integrated with flexibility and controllability 被引量:3
20
作者 Siwen Gu Linlin Liu +3 位作者 Lei Zhang Yiyuan Bai Shaojing Wang Jian Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1474-1484,共11页
Over the last three decades,flexibility and controllability considerations for heat exchanger networks(HENs)have received great attention,respectively.However,they should be simultaneously incorporated in HEN synthesi... Over the last three decades,flexibility and controllability considerations for heat exchanger networks(HENs)have received great attention,respectively.However,they should be simultaneously incorporated in HEN synthesis to allow the economic performance to be achievable in a practical operating environment.This paper proposes a method for simultaneous synthesis of flexible and controllable HEN by considering their coupling.The key idea is to add the bypasses with optimized initial fractions and positions to explore such coupling,and consequently enabling HENs to be operated successfully over a range of disturbance variations.These are implemented by identifying and quantifying disturbance propagations,and then examining the sensitivity of bypasses to the entire HEN.In this way,the superstructurebased mixed integer non-linear programming(MINLP)with objective function of minimizing the total annual cost is formulated.A case study is used to demonstrate the application of the proposed method.Quantitative measures and dynamic simulation show the ability to provide the satisfactory flexibility and controllability of the obtained HEN. 展开更多
关键词 heat exchanger networks FLEXIBILITY CONTROLLABILITY COUPLING Synthesis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部