Seizure detection is extremely essential for long-term monitoring of epileptic patients. This paper investigates the detection of epileptic seizures in multi-channel long-term intracranial electroencephalogram (iEEG...Seizure detection is extremely essential for long-term monitoring of epileptic patients. This paper investigates the detection of epileptic seizures in multi-channel long-term intracranial electroencephalogram (iEEG). The algorithm conducts wavelet decomposition of iEEGs with five scales, and transforms the sum of the three frequency bands into histogram for computing the distance. The proposed method combines a novel feature called EMD-L1, which is an efficient algorithm of earth movers' distance (EMD), with support vector machine (SVM) for binary classification between seizures and non-sei- zures. The EMD-LI used in this method is characterized by low time complexity and high processing speed by exploiting the L~ metric structure. The smoothing and collar technique are applied on the raw outputs of SVM classifier to obtain more ac- curate results. Several evaluation criteria are recommended to compare our algorithm with other conventional methods using the same dataset from the Freiburg EEG database. Experiment results show that the proposed method achieves a high sensi- tivity, specificity and low false detection rate, which are 95.73 %, 98.45 % and 0.33/h, respectively. This algorithm is char- acterized by its robustness and high accuracy with the possibility of performing real-time analysis of EEG data, and may serve as a seizure detection tool for monitoring long-term EEG.展开更多
The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter ...The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features.展开更多
Color descriptors are one of the important features used in content-based in, age retrieval. The dominant color descriptor (DCD) represents a few perceptually dominant colors in an image through color quantization. ...Color descriptors are one of the important features used in content-based in, age retrieval. The dominant color descriptor (DCD) represents a few perceptually dominant colors in an image through color quantization. For image retrieval based on DCD, the earth mover's distance (EMD) and the optimal color composition distance were proposed to measure the dissimilarity between two images. Although providing good retrieval results, both methods are too time-consuming to be used in a large image database. To solve the problem, we propose a new distance function that calculates an approximate earth mover's distance in linear time. To calculate the dissimilarity in linear time, the proposed approach employs the space-filling curve for multidimensional color space. To improve the accuracy, the proposed approach uses multiple curves and adjusts the color positions. As a result, our approach achieves order-of-magnitude time improvement but incurs small errors. We have performed extensive experiments to show the effectiveness and efficiency of the proposed approach. The results reveal that our approach achieves almost the same results with the EMD in linear time.展开更多
Automatic recognition of artists is very important in acoustic music indexing, browsing, and contentbased acoustic music retrieving, but synchronously it is still a challenging errand to extract the most representativ...Automatic recognition of artists is very important in acoustic music indexing, browsing, and contentbased acoustic music retrieving, but synchronously it is still a challenging errand to extract the most representative and salient attributes to depict diversiform artists. In this paper, we developed a novel system to complete the reorganization of artist automatically. The proposed system can efficiently identify the artist's voice of a raw song by analyzing substantive features extracted from both pure music and singing song mixed with accompanying music. The experiments on different genres of songs illustrate that the proposed system is possible.展开更多
基金Key Program of Natural Science Foundation of Shandong Province(No.ZR2013FZ002)Program of Science and Technology of Suzhou(No.ZXY2013030)Independent Innovation Foundation of Shandong University(No.2012DX008)
文摘Seizure detection is extremely essential for long-term monitoring of epileptic patients. This paper investigates the detection of epileptic seizures in multi-channel long-term intracranial electroencephalogram (iEEG). The algorithm conducts wavelet decomposition of iEEGs with five scales, and transforms the sum of the three frequency bands into histogram for computing the distance. The proposed method combines a novel feature called EMD-L1, which is an efficient algorithm of earth movers' distance (EMD), with support vector machine (SVM) for binary classification between seizures and non-sei- zures. The EMD-LI used in this method is characterized by low time complexity and high processing speed by exploiting the L~ metric structure. The smoothing and collar technique are applied on the raw outputs of SVM classifier to obtain more ac- curate results. Several evaluation criteria are recommended to compare our algorithm with other conventional methods using the same dataset from the Freiburg EEG database. Experiment results show that the proposed method achieves a high sensi- tivity, specificity and low false detection rate, which are 95.73 %, 98.45 % and 0.33/h, respectively. This algorithm is char- acterized by its robustness and high accuracy with the possibility of performing real-time analysis of EEG data, and may serve as a seizure detection tool for monitoring long-term EEG.
文摘The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features.
基金supported by the MSIP(Ministry of Science,ICT,and Future Planning),Korea,under the IT-CRSP(IT Convergence Research Support Program)with No.NIPA-2013-H0401-13-1001 supervised by the NIPA(National IT Industry Promotion Agency)the NRF(National Research Foundation)of Korea Grant funded by the Korean Government with No.NRF-2011-330-B00076supported by the Basic Science Research Program through the NRF funded by the Ministry of Education,Science and Technology of Korea under Grant Nos.2012R1A1A2007817 and 2013R1A6A3A03027153
文摘Color descriptors are one of the important features used in content-based in, age retrieval. The dominant color descriptor (DCD) represents a few perceptually dominant colors in an image through color quantization. For image retrieval based on DCD, the earth mover's distance (EMD) and the optimal color composition distance were proposed to measure the dissimilarity between two images. Although providing good retrieval results, both methods are too time-consuming to be used in a large image database. To solve the problem, we propose a new distance function that calculates an approximate earth mover's distance in linear time. To calculate the dissimilarity in linear time, the proposed approach employs the space-filling curve for multidimensional color space. To improve the accuracy, the proposed approach uses multiple curves and adjusts the color positions. As a result, our approach achieves order-of-magnitude time improvement but incurs small errors. We have performed extensive experiments to show the effectiveness and efficiency of the proposed approach. The results reveal that our approach achieves almost the same results with the EMD in linear time.
基金the National Natural Science Foundation of China (No. 60675017)the National Basic Research Program (973) of China (No. 2006CB303103)
文摘Automatic recognition of artists is very important in acoustic music indexing, browsing, and contentbased acoustic music retrieving, but synchronously it is still a challenging errand to extract the most representative and salient attributes to depict diversiform artists. In this paper, we developed a novel system to complete the reorganization of artist automatically. The proposed system can efficiently identify the artist's voice of a raw song by analyzing substantive features extracted from both pure music and singing song mixed with accompanying music. The experiments on different genres of songs illustrate that the proposed system is possible.