期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Debris flow susceptibility analysis based on the combined impacts of antecedent earthquakes and droughts: a case study for cascade hydropower stations in the upper Yangtze River, China 被引量:4
1
作者 HU Gui-sheng CHEN Ning-sheng +3 位作者 TANOLI Javed Iqbal LIU Mei LIU Rong-Kun CHEN Kun-Ting 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1712-1727,共16页
The upper Yangtze River region is one of the most frequent debris flow areas in China. The study area contains a cascade of six large hydropower stations located along the river with total capacity of more than 70 mil... The upper Yangtze River region is one of the most frequent debris flow areas in China. The study area contains a cascade of six large hydropower stations located along the river with total capacity of more than 70 million kilowatts. The purpose of the study was to determine potential and dynamic differences in debris flow susceptibility and intensity with regard to seasonal monsoon events. We analyzed this region's debris flow history by examining the effective peak acceleration of antecedent earthquakes,the impacts of antecedent droughts, the combined effects of earthquakes and droughts, with regard to topography, precipitation, and loose solid material conditions. Based on these factors, we developed a debris flow susceptibility map. Results indicate that the entire debris flow susceptibility area is 167,500 km^2, of which 26,800 km^2 falls within the high susceptibility area, with 60,900 km^2 in medium and 79,800 km^2 are in low susceptibility areas. Three of the six large hydropower stations are located within the areas with high risk of debris flows. The synthetic zonation map of debris flow susceptibility for the study area corresponds with both the investigation data and actual distribution of debris flows. The results of debris flow susceptibility provide base-line data for mitigating, assessing, controlling and monitoring of debris flows hazards. 展开更多
关键词 Hydropower stations Debris flow susceptibility earthquake Drought Geological Information System(GIS) Upper Yangtze River
下载PDF
Research on the relationship between geophysical structural features and earthquakes in Mid-Yunnan and the surrounding area 被引量:1
2
作者 Wu Guiju Tan Hongbo +1 位作者 Yang Guangliang Shen Chongyang 《Geodesy and Geodynamics》 2015年第5期384-391,共8页
In this study, we analyzed the gravity and, magnetic characteristics, and the occurrence of a fault zone and discussed the relationships between the two locations. The results reveal that the subsurface structures str... In this study, we analyzed the gravity and, magnetic characteristics, and the occurrence of a fault zone and discussed the relationships between the two locations. The results reveal that the subsurface structures strikes are different compared with those in the research region. In other words, the geophysical advantageous directions from the gravity and magnetic anomalies are not the same as those caused by the surface structures. The local horizontal gradient results from the gravity and magnetic anomalies show that the majority of earthquakes occur along an intense fault zone, which is a zone of abrupt gravity and negative magnetic change, where the shapes match very well. From the distribution of earthquakes in this area, we find that it has experienced more than 11 earthquake events with magnitude larger than Ms7.0. In addition, water development sites such as Jinshajiang, Lancangjiang, and the Red River and Pearl River watersheds have been hit ten times by earthquakes of this magnitude. It is observed that strong earthquakes occur frequently in the Holocene active fault zone. 展开更多
关键词 Gravity anomaly Magnetic anomaly Multi-scale wavelet analysis Tectonics earthquake 3D sliding average method Geological feature River system
下载PDF
The formation of the Wulipo landslide and the resulting debris flow in Dujiangyan City, China 被引量:14
3
作者 CHEN Xing-zhang CUI Yi-fei 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1100-1112,共13页
The Wulipo landslide, triggered by heavy rainfall on July 10, 2013, transformed into debris flow,resulted in the destruction of 12 houses, 44 deaths, and 117 missing. Our systematic investigation has led to the follow... The Wulipo landslide, triggered by heavy rainfall on July 10, 2013, transformed into debris flow,resulted in the destruction of 12 houses, 44 deaths, and 117 missing. Our systematic investigation has led to the following results and to a new understanding about the formation and evolution process of this hazard. The fundamental factors of the formation of the landslide are a high-steep free surface at the front of the slide mass and the sandstone-mudstone mixed stratum structure of the slope. The inducing factor of the landslide is hydrostatic and hydrodynamic pressure change caused by heavy continuous rainfall. The geological mechanical model of the landslide can be summarized as "instability-translational slide-tension fracture-collapse" and the formation mechanism as "translational landslide induced by heavy rainfall". The total volume of the landslide is 124.6×104 m3, and 16.3% of the sliding mass was dropped down from the cliff and transformed into debris flow during the sliding process, which enlarged 46.7% of the original sliding deposit area. The final accumulation area is found to be 9.2×104 m2. The hazard is a typical example of a disaster chain involving landslide and its induced debris flow. The concealment and disaster chain effect is the main reason for the heavy damage. In future risk assessment, it is suggested to enhance the research onpotential landslide identification for weakly intercalated slopes. By considering the influence of the behaviors of landslide-induced debris flow, the disaster area could be determined more reasonably. 展开更多
关键词 Landslide Debris flow Disaster chain effect Heavy rainfall Geological hazard area Wenchuan earthquake
下载PDF
Detecting repture precursors and determining the main fracture spread direction of rock with dynamic rock resistivity change anisotropy 被引量:1
4
作者 陈峰 修济刚 +2 位作者 安金珍 廖棒庭 陈大元 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第2期234-237,共4页
关键词 electric resistivity of rock earth resistivity anisotropy in resistivity earthquake geologic hazard
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部