The analysis of seismic hazards relies on the statistical analysis of historical seismic data and the instrumental seismic catalog to obtain the regional earthquake recurrence interval and earthquake probability.The a...The analysis of seismic hazards relies on the statistical analysis of historical seismic data and the instrumental seismic catalog to obtain the regional earthquake recurrence interval and earthquake probability.The accuracy of analysis thus depends strongly on the completeness of the seismic data used.However,available seismic catalogs are too short or incomplete for the reliable analysis of the statistical characteristics of earthquakes.If a long-term synthetic seismic catalog can be generated using a physics-based numerical simulation,and the simulation results match the crustal deformation,seismicity,and other observations,then such a synthetic catalog helps us to further understand the characteristics of seismic activity and analyze the regional seismic hazard.In this paper,taking the northeastern Tibetan Plateau as a case study,we establish a three-dimensional visco-elastoplastic finite-element model to simulate earthquake cycles and the spatiotemporal evolution of earthquakes on the model fault system and obtain a seismic catalog on a time scale of tens of thousands of years.On the basis that the model satisfies the regional geodynamics of the northeastern Tibetan Plateau,we analyze seismicity on the northeastern Tibetan Plateau using the simulated synthetic earthquake catalog.The characteristics of earthquake recurrence at different locations and different magnitudes,and the long-term average probability of earthquake occurrence within the fault system on the northeastern Tibetan plateau are studied.The results are a reference for regional seismic hazard assessment and provide a basis for the physics-based numerical prediction of earthquakes.展开更多
The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in t...The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in this paper. The R-value method, developed by Xu (1989), is further developed here, and can be applied to more complicated cases. Probability gains in spatial and/or temporal domains and the R-values for different forecast methods are estimated in North China. The synthesized probability gain is then estimated as an example.展开更多
A probability forecast method of earthquake magnitude, based on the earthquake frequency magnitude relation and the model of Bernoulli′s random independent trial, is applied to the earthquake risk assessmen...A probability forecast method of earthquake magnitude, based on the earthquake frequency magnitude relation and the model of Bernoulli′s random independent trial, is applied to the earthquake risk assessment of seismic zones in China's Mainland before A.D.2005 in the paper. The forecasting results indicate that the probabilities of earthquake occurrence with magnitude 5 in seismic zones before 2005 are estimated to be over 0.7 in common and 0.8 in most zones; and from 0.5 to 0.7 with M =6; the maximum probability of earthquake occurrence with magnitude 7 is estimated at 0.858, which is also expected in Shanxi seismic zone. In west China's Mainland, earthquakes with magnitude 6 are expected to occur in most seismic zones with high probability (over 0.9 in general) ; the relatively high probabilities of earthquake occurrence (more than 0.7) with magnitude 7 are expected in the seismic zones surrounding the Qinghai Tibet plateau and south Tianshan seismic zone. A discussion about the result confidence and the relationship between the estimated probability and the possible annual rate of earthquake occurrence is made in the last part of the paper.展开更多
The Zhangjiakou-Penglai fault zone lies in the northern part of North China Plain and extends along the Zhangjiakou-Huailai-Sanhe-Tianjin-Bohai Sea-Penglai-Yantai-North Huanghai Sea line, it is about 900 km long and s...The Zhangjiakou-Penglai fault zone lies in the northern part of North China Plain and extends along the Zhangjiakou-Huailai-Sanhe-Tianjin-Bohai Sea-Penglai-Yantai-North Huanghai Sea line, it is about 900 km long and some 250-km wide in a northwest direction. The 1679 Sanhe-Pinggu M 8.0 and the 1976 Tangshan M7.8 earthquakes occurred in the fault zone. In this paper an analysis of Gutenberg- Richter’s empirical relation and time process of historic and recent earthquakes along the eastern and western segments of the fault zone separated by the 117°line indicates that they obey a Poison process and, hence, a calculation from it yields a cumulative probability of strong earthquake occurrence along the two segments before 2010, i. e. the probability of M6.0 earthquake occurrence is 0.80 along the eastern segment and the probability of M7. 0 earthquake occurrence is 0.76 along the western segment of the fault zone.展开更多
基金supported by China Earthquake Science Experiment Project,CEA(Grant No.2019CSES0112)National Natural Science Foundation of China(Grant Nos.41574085,41974107,41590865&U1839207)。
文摘The analysis of seismic hazards relies on the statistical analysis of historical seismic data and the instrumental seismic catalog to obtain the regional earthquake recurrence interval and earthquake probability.The accuracy of analysis thus depends strongly on the completeness of the seismic data used.However,available seismic catalogs are too short or incomplete for the reliable analysis of the statistical characteristics of earthquakes.If a long-term synthetic seismic catalog can be generated using a physics-based numerical simulation,and the simulation results match the crustal deformation,seismicity,and other observations,then such a synthetic catalog helps us to further understand the characteristics of seismic activity and analyze the regional seismic hazard.In this paper,taking the northeastern Tibetan Plateau as a case study,we establish a three-dimensional visco-elastoplastic finite-element model to simulate earthquake cycles and the spatiotemporal evolution of earthquakes on the model fault system and obtain a seismic catalog on a time scale of tens of thousands of years.On the basis that the model satisfies the regional geodynamics of the northeastern Tibetan Plateau,we analyze seismicity on the northeastern Tibetan Plateau using the simulated synthetic earthquake catalog.The characteristics of earthquake recurrence at different locations and different magnitudes,and the long-term average probability of earthquake occurrence within the fault system on the northeastern Tibetan plateau are studied.The results are a reference for regional seismic hazard assessment and provide a basis for the physics-based numerical prediction of earthquakes.
文摘The principle of middle and long-term earthquake forecast model of spatial and temporal synthesized probability gain and the evaluation of forecast efficiency (R-values) of various forecast methods are introduced in this paper. The R-value method, developed by Xu (1989), is further developed here, and can be applied to more complicated cases. Probability gains in spatial and/or temporal domains and the R-values for different forecast methods are estimated in North China. The synthesized probability gain is then estimated as an example.
文摘A probability forecast method of earthquake magnitude, based on the earthquake frequency magnitude relation and the model of Bernoulli′s random independent trial, is applied to the earthquake risk assessment of seismic zones in China's Mainland before A.D.2005 in the paper. The forecasting results indicate that the probabilities of earthquake occurrence with magnitude 5 in seismic zones before 2005 are estimated to be over 0.7 in common and 0.8 in most zones; and from 0.5 to 0.7 with M =6; the maximum probability of earthquake occurrence with magnitude 7 is estimated at 0.858, which is also expected in Shanxi seismic zone. In west China's Mainland, earthquakes with magnitude 6 are expected to occur in most seismic zones with high probability (over 0.9 in general) ; the relatively high probabilities of earthquake occurrence (more than 0.7) with magnitude 7 are expected in the seismic zones surrounding the Qinghai Tibet plateau and south Tianshan seismic zone. A discussion about the result confidence and the relationship between the estimated probability and the possible annual rate of earthquake occurrence is made in the last part of the paper.
基金the project of " Mechanism for Continental Strong Earthquakes and Their Prediction" , one of the projects in the National Basic Scientific Research and Development Program,grant No.G1998040706.
文摘The Zhangjiakou-Penglai fault zone lies in the northern part of North China Plain and extends along the Zhangjiakou-Huailai-Sanhe-Tianjin-Bohai Sea-Penglai-Yantai-North Huanghai Sea line, it is about 900 km long and some 250-km wide in a northwest direction. The 1679 Sanhe-Pinggu M 8.0 and the 1976 Tangshan M7.8 earthquakes occurred in the fault zone. In this paper an analysis of Gutenberg- Richter’s empirical relation and time process of historic and recent earthquakes along the eastern and western segments of the fault zone separated by the 117°line indicates that they obey a Poison process and, hence, a calculation from it yields a cumulative probability of strong earthquake occurrence along the two segments before 2010, i. e. the probability of M6.0 earthquake occurrence is 0.80 along the eastern segment and the probability of M7. 0 earthquake occurrence is 0.76 along the western segment of the fault zone.