The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake moni...The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster.展开更多
On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault ...On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault Zone,a convergent boundary between the Arabian Plate and the Anatolian Subplate.In this study,we analyze the M_(W) 7.8 and M_(W) 7.5 earthquakes by comparing their aftershock relocations,tomographic images,and stress field inversions.The earthquakes were localized in the upper crust and exhibited steep dip angles.Furthermore,the aftershocks occurred either close to the boundaries of low and high P-wave velocity anomaly zones or within the low P-wave velocity anomaly zones.The East Anatolia Fault,associated with the M_(W) 7.8 earthquake,and the SürgüFault,related to the M_(W) 7.5 earthquake,predominantly experienced shear stress.However,their western sections experienced a combination of strike-slip and tensile stresses in addition to shear stress.The ruptures of the M_(W) 7.8 and M_(W) 7.5 earthquakes appear to have bridged a seismic gap that had seen sparse seismicity over the past 200 years prior to the 2023 Turkey earthquake sequence.展开更多
North China is one of the high-risk areas for destructive strong earthquakes in China's Mainland, with a history of numerous significant seismic events. On August 6, 2023, an Mw5.5 earthquake struck Pingyuan Count...North China is one of the high-risk areas for destructive strong earthquakes in China's Mainland, with a history of numerous significant seismic events. On August 6, 2023, an Mw5.5 earthquake struck Pingyuan County, Dezhou City, in Shandong Province, China. This earthquake was the largest in the eastern North China Craton(NCC) since the Tangshan earthquake of 1976. Due to the absence of surface ruptures, the fault responsible for the Pingyuan Mw5.5 earthquake remains unclear. To reveal the subsurface geological structure near the earthquake epicenter, this study utilized highresolution two-dimensional seismic reflection profiles to interpret pre-existing faults.展开更多
We employed a double-difference algorithm (hypoDD) to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964-2003 reported by the International Seismologi...We employed a double-difference algorithm (hypoDD) to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964-2003 reported by the International Seismological Center (ISC). The improved hypocentral locations delineate a double-layered Wadati-Benioff zone in the eastern Hindu Kush intermediate seismic belt. Based on this feature and other evidences, we propose that the intermediate-depth earthquakes beneath the Pamir-Hindu Kush region may occur in two collided subduction zones with opposite dip directions.展开更多
On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern...On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern China in the recent years. Historical seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault capable of generating a moderate earthquake like this event was found. The earthquake locations of the main shock and its aftershocks of the Zhangbei-Shangyi earthquake sequence given by several agencies and authors were diverse and the resulted hypocentral distribution revealed no any dominant horizontal lineation. To study the seismogenic structure of the Zhangbei-Shangyi earthquake, in this paper the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated using the master event relative relocation algorithm. The relocated results show that the epicentral location of the main shock was 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 15 km. The hypocenters of the aftershocks distributed in a nearly vertical N20E-striking plane and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a nearly N-S- to NNE-SSW-striking fault with right-lateral and reverse slip, and that the occurrence of this event was associated with the horizontal and ENE-oriented compressive tectonic stress, which was compatible with the tectonic stress field in the northern China.展开更多
On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most signifi...On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most significant event to have occurred in northern China in the recent years. The earthquake-generating structure of this event was not clear due to no active fault capable of generating a moderate earthquake was found in the epicentral area, nor surface ruptures with any predominate orientation were observed, no distinct orientation of its aftershock distribution given by routine earthquake location was shown. To study the seismogenic structure of the Zhangbei- Shangyi earthquake, the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated by the authors of this paper in 2002 using the master event relative relocation technique. The relocated epicenter of the main shock was located at 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of this event. The relocated focal depth of the main shock was 15 km. Hypocenters of the aftershocks distributed in a nearly vertical plane striking 180~200 and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a NNE-SSW-striking fault with right-lateral and reverse slip. In this paper, a relocation of the Zhangbei-Shangyi earthquake sequence has been done using the double difference earthquake location algorithm (DD algorithm), and consistent results with that obtained by the master event technique were obtained. The relocated hypocenters of the main shock are located at 41.131癗, 114.456癊, which was located 2.5 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 12.8 km. Hypocenters of the aftershocks also distributed in a nearly vertical N10E-striking plane and its vicinity. The relocated results using DD algorithm clearly indicated that the seismogenic structure of this event was a NNE-striking fault again.展开更多
A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity m...A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity model and earthquake relocation for this region are obtained using Pg and Sg phase readings of 9 988 earthquakes from 1992 to 1999 recorded at 193 seismic stations within central-western China by SPHYPIT90 and SPHREL3D90 programs. A lateral inhomogeneous structure of P-wave velocity in this region was obtained. Ob-vious contrast of P-wave velocities was revealed on both sides of active fault zones. Relocated epicenters of 6 459 events show clear lineation along active faults, which indicated a close correlation between seismicity and the active faults in this region. Focal depths of 82% relocated events ranged from 0 to 20 km, which is in good agreement with that from double-difference earthquake location algorithm.展开更多
We apply three methods to relocate 599 earthquake events that occurred from August 2004 to August 2005 in the northeastern Tianshan Mountains area ( 85°30' ~ 88°30'E,43°00' ~ 44°40...We apply three methods to relocate 599 earthquake events that occurred from August 2004 to August 2005 in the northeastern Tianshan Mountains area ( 85°30' ~ 88°30'E,43°00' ~ 44°40' N ) by using travel times recorded by regional seismic network and 10 portable seismic stations deployed around the Urumqi city. By comparing the reliability of different results,we determined a suitable location method,and an improved 1-D crustal velocity model of the study area. The uncertainty of earthquake location is significantly reduced with combined data of seismic network and portable stations. The relocated events are clearly associated with regional tectonics of the northeastern Tianshan Mountains area, and are also in agreement with the existence of active faults imaged by deep seismic reflection profile. The relocated seismicity discovers some potential traces of buried active faults,which need to be validated further.展开更多
This study relocated 348 microearthquakes which occurred in Beijing and its northwest neighbouring area (39°-41°N, 114°-117°E) during 1979-March of 1992.In the relocation the Powell searching techn...This study relocated 348 microearthquakes which occurred in Beijing and its northwest neighbouring area (39°-41°N, 114°-117°E) during 1979-March of 1992.In the relocation the Powell searching technique was used and the associated error of earthquake hypocenters was estimated by numerical tests.Precision of hypocenter locations is improved by rechecking and supplementing readings of arriving times of the seismic phases used,testing and selecting appropriate crustal model,and modifying the computer program.The overall average RMS residual of arriving times has been reduced to 0.45 s from the previous value of 0.80 s.For nearly 10 per cent of the relocated hypocenters,which are mostly in border region of the area covered by the Beijing Telemetered Seismic Network,have been shifted more than 10 km.After the relocation the number of earthquakes with focal depth determination has been increased to 313 from the previous 132.展开更多
Characteristics of seismic activity before the M5. 1 earthquake in Wen'an, Hebei Province on July 4, 2006 are analyzed by relocation of small earthquakes in the China's capital area, and some results are obtained as...Characteristics of seismic activity before the M5. 1 earthquake in Wen'an, Hebei Province on July 4, 2006 are analyzed by relocation of small earthquakes in the China's capital area, and some results are obtained as follows:① The seismic activity of ML ≥ 3.0 in the middle part of the Hebei plain seismic belt displayed a feature of strengthening ( lasting 43 months) quiescence (17 months) five years before the Wen'an earthquake. Simultaneously, the strain release curve showed a variation process of accelerating-flatting. ② A seismogenic gap in a three-dimensional space, located at the depth of 15km - 20km, with 70km long in latitude direction and 90km long in longitude orientation, was formed by M≥2.0 earthquakes four years prior to the Wen'an earthquake. The initial rupture point of the Wen'an earthquake is situated at the bottom of the gap. ③ The focal depths of earthquakes with ML ≥ 2. 0 in the middle part of the Hebei plain seismic belt gradually increased from 10km to 30kin during the period from April, 2003 to October, 2004. Meanwhile, the seismic activity obviously strengthened in the middle and lower crust (from 20km to 30km in depth).展开更多
We applied the double-difference earthquake rdocation algorithm to 1348 earthquakes with Ms ≥2.0 that occurred in the northern Tianshan region, Xinjiang, from April 1988 to June 2003, using a total of 28701 P- and S-...We applied the double-difference earthquake rdocation algorithm to 1348 earthquakes with Ms ≥2.0 that occurred in the northern Tianshan region, Xinjiang, from April 1988 to June 2003, using a total of 28701 P- and S-wave arrival times recorded by 32 seismic stations in Xinjiang. Aiming to obtain most of these Ms ≥ 2.0 earthquakes relocations, and considering the requirements of the DD method and the condition of data, we added the travel time data of another 437 earthquakes with 1.5 ≤ Ms 〈 2.0. Finally, we obtained the relocation results for 1253 earthquakes with Ms ≥2.0, which account for 93 % of all the 1348 earthquakes with Ms ≥ 2.0 and includes all the Ms ≥ 3.0 earthquakes. The reason for not relocating the 95 earthquakes with 2.0 ≤ Ms 〈 3.0 is analyzed in the paper. After relocation, the RMS residual decreased from 0.83s to 0.14s, the average error is 0.993 km in E-W direction, 1.10 km in N- S direction, and 1.33 km in vertical direction. The hypocenter depths are more convergent than before and distributed from 5 km to 35 kin, with 94% being from 5km to 35 kin, 68.2% from 10 km to 25 kin. The average hypocenter depth is 19 kin.展开更多
The July 3,2015 Pishan M_S6. 5 earthquake occurred in the intersection area of the Tarim block and West Kunlun block where the moderate-strong earthquakes have become active in recent years. This paper has studied the...The July 3,2015 Pishan M_S6. 5 earthquake occurred in the intersection area of the Tarim block and West Kunlun block where the moderate-strong earthquakes have become active in recent years. This paper has studied the seismicity parameters of the earthquake sequences such as the b-value in the Pishan region and its vicinity. In addition,we also relocated the aftershocks of the Pishan M_S6. 5 earthquake using the seismic phase report by the double-difference method. The temporal and spatial variation characteristics of the Pishan earthquake sequence in the rupture zone are analyzed. The study is of great significance in the seismic hazard assessment in this region.展开更多
Merapi volcano located in central Java, Indonesia,is one of the most active stratovolcanoes in the world. Many Earth scientists have conducted studies on this volcano using various methods. The geological features aro...Merapi volcano located in central Java, Indonesia,is one of the most active stratovolcanoes in the world. Many Earth scientists have conducted studies on this volcano using various methods. The geological features around Merapi are very attractive to be investigated because they have been formed by a complex tectonic process and volcanic activities since tens of millions of years ago. The southern mountain range, Kendeng basin and Opak active fault located around the study area resulted from these processes. DOMERAPI project was conducted to understand deep magma sources of the Merapi volcano comprehensively. The DOMERAPI network was running from October 2013 to mid-April 2015 by deploying 46 broad-band seismometers around the volcano. Several steps, i.e., earthquake event identification,arrival time picking of P and S waves, hypocenter determination and hypocenter relocation, were carried out in this study. We used Geiger's method(Geiger 1912) for hypocenter determination and double-difference method for hypocenter relocation. The relocation result will be used to carry out seismic tomographic imaging of structures beneath the Merapi volcano and its surroundings. For the hypocenter determination, the DOMERAPI data were processed simultaneously with those from the Agency for Meteorology, Climatology and Geophysics(BMKG) seismic network in order to minimize the azimuthal gap. We found that the majority of earthquakes occurred outside the DOMERAPI network. There are 464 and 399 earthquakes obtained before and after hypocenter relocation, respectively. The hypocenter relocation result successfully detects some tectonic features, such as a nearly vertical cluster of events indicating a subduction-related backthrust to the south of central Java and a cluster of events to the east of Opak fault suggesting that the fault has an eastward dip.展开更多
As one of the world's most active intracontinental mountain belts, Tien Shan has posed questions for researchers regarding the formation of different tectonic units and active shallow seismicity. Here, we used a h...As one of the world's most active intracontinental mountain belts, Tien Shan has posed questions for researchers regarding the formation of different tectonic units and active shallow seismicity. Here, we used a huge data set comprising of 7094 earthquakes from local, regional and teleseismic seismic stations. We used waveform modeling and multi-scale double-difference earthquake relocation technique to better constrain the source parameters of the earthquakes. The new set of events provided us with better initial earthquake locations for further tomographic investigation. We found that reverse-faulting earthquakes dominate the whole study area while the fault plane solutions for earthquakes beneath the northwestern Tarim Basin and the Main Pamir Thrust are diverse. There is a low-velocity anomaly beneath Bashkaingdy at depth of 80 km, and high-velocity anomalies beneath central Tien Shan at shallower depths. These observations are the keys to understand the mechanism of Tien Shan's formation because of Tarim Basin northward and Kazakh Shield's southward subduction in the south and north respectively. Velocities beneath western Tien Shan are relatively high. We thus infer that the Western Tien Shan is relatively less deformed than the eastern Tien Shan primarily due to a relatively brittle mantle.展开更多
文摘The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.42130312 and 4198810101)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK07)
文摘On February 6,2023,two earthquakes with magnitudes of M_(W) 7.8 and M_(W) 7.5 struck southeastern Turkey,causing significant casualties and economic losses.These seismic events occurred along the East Anatolian Fault Zone,a convergent boundary between the Arabian Plate and the Anatolian Subplate.In this study,we analyze the M_(W) 7.8 and M_(W) 7.5 earthquakes by comparing their aftershock relocations,tomographic images,and stress field inversions.The earthquakes were localized in the upper crust and exhibited steep dip angles.Furthermore,the aftershocks occurred either close to the boundaries of low and high P-wave velocity anomaly zones or within the low P-wave velocity anomaly zones.The East Anatolia Fault,associated with the M_(W) 7.8 earthquake,and the SürgüFault,related to the M_(W) 7.5 earthquake,predominantly experienced shear stress.However,their western sections experienced a combination of strike-slip and tensile stresses in addition to shear stress.The ruptures of the M_(W) 7.8 and M_(W) 7.5 earthquakes appear to have bridged a seismic gap that had seen sparse seismicity over the past 200 years prior to the 2023 Turkey earthquake sequence.
文摘North China is one of the high-risk areas for destructive strong earthquakes in China's Mainland, with a history of numerous significant seismic events. On August 6, 2023, an Mw5.5 earthquake struck Pingyuan County, Dezhou City, in Shandong Province, China. This earthquake was the largest in the eastern North China Craton(NCC) since the Tangshan earthquake of 1976. Due to the absence of surface ruptures, the fault responsible for the Pingyuan Mw5.5 earthquake remains unclear. To reveal the subsurface geological structure near the earthquake epicenter, this study utilized highresolution two-dimensional seismic reflection profiles to interpret pre-existing faults.
基金partly sup-ported by the National Fundamental Science Program of China under(No.2004cb418406)the National Natural Science Foundation of China(No.90814002)Key Projects in the National Science & Technology PillarProgram during the Eleventh Five-year Plan Period(No.2008BAC38B02-4)
文摘We employed a double-difference algorithm (hypoDD) to relocate earthquakes within the region bounded by 66°E-78°E and 32°N-42°N in the period of 1964-2003 reported by the International Seismological Center (ISC). The improved hypocentral locations delineate a double-layered Wadati-Benioff zone in the eastern Hindu Kush intermediate seismic belt. Based on this feature and other evidences, we propose that the intermediate-depth earthquakes beneath the Pamir-Hindu Kush region may occur in two collided subduction zones with opposite dip directions.
基金The Project Mechanism and Prediction of Continental Strong Earthquakes Ministry of Science and Technology Peoples Republic of China (G19980407/95-13-02-04).
文摘On January 10, 1998, an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake has been the most significant event occurred in the northern China in the recent years. Historical seismicity in the Zhangbei-Shangyi region was very low. In the epicentral area no active fault capable of generating a moderate earthquake like this event was found. The earthquake locations of the main shock and its aftershocks of the Zhangbei-Shangyi earthquake sequence given by several agencies and authors were diverse and the resulted hypocentral distribution revealed no any dominant horizontal lineation. To study the seismogenic structure of the Zhangbei-Shangyi earthquake, in this paper the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated using the master event relative relocation algorithm. The relocated results show that the epicentral location of the main shock was 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 15 km. The hypocenters of the aftershocks distributed in a nearly vertical N20E-striking plane and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a nearly N-S- to NNE-SSW-striking fault with right-lateral and reverse slip, and that the occurrence of this event was associated with the horizontal and ENE-oriented compressive tectonic stress, which was compatible with the tectonic stress field in the northern China.
文摘On January 10, 1998, at 11h50min Beijing Time (03h50min UTC), an earthquake of ML=6.2 occurred in the border region between the Zhangbei County and Shangyi County of Hebei Province. This earthquake is the most significant event to have occurred in northern China in the recent years. The earthquake-generating structure of this event was not clear due to no active fault capable of generating a moderate earthquake was found in the epicentral area, nor surface ruptures with any predominate orientation were observed, no distinct orientation of its aftershock distribution given by routine earthquake location was shown. To study the seismogenic structure of the Zhangbei- Shangyi earthquake, the main shock and its aftershocks with ML3.0 of the Zhangbei-Shangyi earthquake sequence were relocated by the authors of this paper in 2002 using the master event relative relocation technique. The relocated epicenter of the main shock was located at 41.145癗, 114.462癊, which was located 4 km to the NE of the macro-epicenter of this event. The relocated focal depth of the main shock was 15 km. Hypocenters of the aftershocks distributed in a nearly vertical plane striking 180~200 and its vicinity. The relocated results of the Zhangbei-Shangyi earthquake sequence clearly indicated that the seismogenic structure of this event was a NNE-SSW-striking fault with right-lateral and reverse slip. In this paper, a relocation of the Zhangbei-Shangyi earthquake sequence has been done using the double difference earthquake location algorithm (DD algorithm), and consistent results with that obtained by the master event technique were obtained. The relocated hypocenters of the main shock are located at 41.131癗, 114.456癊, which was located 2.5 km to the NE of the macro-epicenter of the main shock. The relocated focal depth of the main shock was 12.8 km. Hypocenters of the aftershocks also distributed in a nearly vertical N10E-striking plane and its vicinity. The relocated results using DD algorithm clearly indicated that the seismogenic structure of this event was a NNE-striking fault again.
文摘A simultaneous inversion of earthquake relocation and three-dimensional crustal structure of P-wave velocity in central-western China (21癗~36癗, 98癊~112癊) were performed in this paper. The crustal P-wave velocity model and earthquake relocation for this region are obtained using Pg and Sg phase readings of 9 988 earthquakes from 1992 to 1999 recorded at 193 seismic stations within central-western China by SPHYPIT90 and SPHREL3D90 programs. A lateral inhomogeneous structure of P-wave velocity in this region was obtained. Ob-vious contrast of P-wave velocities was revealed on both sides of active fault zones. Relocated epicenters of 6 459 events show clear lineation along active faults, which indicated a close correlation between seismicity and the active faults in this region. Focal depths of 82% relocated events ranged from 0 to 20 km, which is in good agreement with that from double-difference earthquake location algorithm.
基金supported by the Basic Research Project of Institute of Earthquake Science,CEA (2012IES010103)the National Natural Science Foundation of China (41204037)
文摘We apply three methods to relocate 599 earthquake events that occurred from August 2004 to August 2005 in the northeastern Tianshan Mountains area ( 85°30' ~ 88°30'E,43°00' ~ 44°40' N ) by using travel times recorded by regional seismic network and 10 portable seismic stations deployed around the Urumqi city. By comparing the reliability of different results,we determined a suitable location method,and an improved 1-D crustal velocity model of the study area. The uncertainty of earthquake location is significantly reduced with combined data of seismic network and portable stations. The relocated events are clearly associated with regional tectonics of the northeastern Tianshan Mountains area, and are also in agreement with the existence of active faults imaged by deep seismic reflection profile. The relocated seismicity discovers some potential traces of buried active faults,which need to be validated further.
文摘This study relocated 348 microearthquakes which occurred in Beijing and its northwest neighbouring area (39°-41°N, 114°-117°E) during 1979-March of 1992.In the relocation the Powell searching technique was used and the associated error of earthquake hypocenters was estimated by numerical tests.Precision of hypocenter locations is improved by rechecking and supplementing readings of arriving times of the seismic phases used,testing and selecting appropriate crustal model,and modifying the computer program.The overall average RMS residual of arriving times has been reduced to 0.45 s from the previous value of 0.80 s.For nearly 10 per cent of the relocated hypocenters,which are mostly in border region of the area covered by the Beijing Telemetered Seismic Network,have been shifted more than 10 km.After the relocation the number of earthquakes with focal depth determination has been increased to 313 from the previous 132.
基金sponsored by the National Key Technology R&D Program(2006BAC01B02-01-02),China
文摘Characteristics of seismic activity before the M5. 1 earthquake in Wen'an, Hebei Province on July 4, 2006 are analyzed by relocation of small earthquakes in the China's capital area, and some results are obtained as follows:① The seismic activity of ML ≥ 3.0 in the middle part of the Hebei plain seismic belt displayed a feature of strengthening ( lasting 43 months) quiescence (17 months) five years before the Wen'an earthquake. Simultaneously, the strain release curve showed a variation process of accelerating-flatting. ② A seismogenic gap in a three-dimensional space, located at the depth of 15km - 20km, with 70km long in latitude direction and 90km long in longitude orientation, was formed by M≥2.0 earthquakes four years prior to the Wen'an earthquake. The initial rupture point of the Wen'an earthquake is situated at the bottom of the gap. ③ The focal depths of earthquakes with ML ≥ 2. 0 in the middle part of the Hebei plain seismic belt gradually increased from 10km to 30kin during the period from April, 2003 to October, 2004. Meanwhile, the seismic activity obviously strengthened in the middle and lower crust (from 20km to 30km in depth).
基金Joint Earthquake Science Foundation of China (104001)
文摘We applied the double-difference earthquake rdocation algorithm to 1348 earthquakes with Ms ≥2.0 that occurred in the northern Tianshan region, Xinjiang, from April 1988 to June 2003, using a total of 28701 P- and S-wave arrival times recorded by 32 seismic stations in Xinjiang. Aiming to obtain most of these Ms ≥ 2.0 earthquakes relocations, and considering the requirements of the DD method and the condition of data, we added the travel time data of another 437 earthquakes with 1.5 ≤ Ms 〈 2.0. Finally, we obtained the relocation results for 1253 earthquakes with Ms ≥2.0, which account for 93 % of all the 1348 earthquakes with Ms ≥ 2.0 and includes all the Ms ≥ 3.0 earthquakes. The reason for not relocating the 95 earthquakes with 2.0 ≤ Ms 〈 3.0 is analyzed in the paper. After relocation, the RMS residual decreased from 0.83s to 0.14s, the average error is 0.993 km in E-W direction, 1.10 km in N- S direction, and 1.33 km in vertical direction. The hypocenter depths are more convergent than before and distributed from 5 km to 35 kin, with 94% being from 5km to 35 kin, 68.2% from 10 km to 25 kin. The average hypocenter depth is 19 kin.
基金sponsored by the Program Spark Program of Earthquake Science of China under Grant No.XH16044National Natural Science Foundation of China under Grant No.41504047Task Contract for Earthquake Situation Tracking of CEA in 2017(2017010102)
文摘The July 3,2015 Pishan M_S6. 5 earthquake occurred in the intersection area of the Tarim block and West Kunlun block where the moderate-strong earthquakes have become active in recent years. This paper has studied the seismicity parameters of the earthquake sequences such as the b-value in the Pishan region and its vicinity. In addition,we also relocated the aftershocks of the Pishan M_S6. 5 earthquake using the seismic phase report by the double-difference method. The temporal and spatial variation characteristics of the Pishan earthquake sequence in the rupture zone are analyzed. The study is of great significance in the seismic hazard assessment in this region.
基金Institut de Recherche pour le Développement (IRD), France, for funding the DOMERAPI projectCenter for Volcanology and Geohazard Mitigation as the main counterpart of the DOMERAPI project in Indonesia+1 种基金supported in part by the Indonesian Directorate General of Higher Education (DIKTI) research funding 2015–2016the Institut Teknologi Bandung (ITB) through a WCU research Grant 2016 awarded to SW
文摘Merapi volcano located in central Java, Indonesia,is one of the most active stratovolcanoes in the world. Many Earth scientists have conducted studies on this volcano using various methods. The geological features around Merapi are very attractive to be investigated because they have been formed by a complex tectonic process and volcanic activities since tens of millions of years ago. The southern mountain range, Kendeng basin and Opak active fault located around the study area resulted from these processes. DOMERAPI project was conducted to understand deep magma sources of the Merapi volcano comprehensively. The DOMERAPI network was running from October 2013 to mid-April 2015 by deploying 46 broad-band seismometers around the volcano. Several steps, i.e., earthquake event identification,arrival time picking of P and S waves, hypocenter determination and hypocenter relocation, were carried out in this study. We used Geiger's method(Geiger 1912) for hypocenter determination and double-difference method for hypocenter relocation. The relocation result will be used to carry out seismic tomographic imaging of structures beneath the Merapi volcano and its surroundings. For the hypocenter determination, the DOMERAPI data were processed simultaneously with those from the Agency for Meteorology, Climatology and Geophysics(BMKG) seismic network in order to minimize the azimuthal gap. We found that the majority of earthquakes occurred outside the DOMERAPI network. There are 464 and 399 earthquakes obtained before and after hypocenter relocation, respectively. The hypocenter relocation result successfully detects some tectonic features, such as a nearly vertical cluster of events indicating a subduction-related backthrust to the south of central Java and a cluster of events to the east of Opak fault suggesting that the fault has an eastward dip.
基金supported by the National Natural Science Foundation of China(Grant No.41490611)to Bai L and Zhao J Mthe China academy of Sciences(Grant No.XDB03010702)to Zhao J Mthe TWAS(The world Academy of Sciences)through CAS-TWAS president fellowship to Khan N G
文摘As one of the world's most active intracontinental mountain belts, Tien Shan has posed questions for researchers regarding the formation of different tectonic units and active shallow seismicity. Here, we used a huge data set comprising of 7094 earthquakes from local, regional and teleseismic seismic stations. We used waveform modeling and multi-scale double-difference earthquake relocation technique to better constrain the source parameters of the earthquakes. The new set of events provided us with better initial earthquake locations for further tomographic investigation. We found that reverse-faulting earthquakes dominate the whole study area while the fault plane solutions for earthquakes beneath the northwestern Tarim Basin and the Main Pamir Thrust are diverse. There is a low-velocity anomaly beneath Bashkaingdy at depth of 80 km, and high-velocity anomalies beneath central Tien Shan at shallower depths. These observations are the keys to understand the mechanism of Tien Shan's formation because of Tarim Basin northward and Kazakh Shield's southward subduction in the south and north respectively. Velocities beneath western Tien Shan are relatively high. We thus infer that the Western Tien Shan is relatively less deformed than the eastern Tien Shan primarily due to a relatively brittle mantle.