We carried out a census of the rural residential buildings of Zhongxiang area' s 17 towns. Next, we conducted a sample survey in four townships: Huji, Shipai, Zhangji, and Jiuli. According to the census and sample s...We carried out a census of the rural residential buildings of Zhongxiang area' s 17 towns. Next, we conducted a sample survey in four townships: Huji, Shipai, Zhangji, and Jiuli. According to the census and sample survey data of the rural residence buildings, we evaluated the quality and earthquake-resistant performance of the rural buildings for the various local rural residential structural types. The results showed that there are four main factors affecting the seismic performance of the local rural residences : ( 1 ) Foundations are not made appropriately ( such as by compaction or some other fill) but are built directly in the farming soil. (2) Seismic measures are not completely implemented. Structure construction measures are not in place at the junction of the vertical and horizontal wall. The vertical wall joints are not the result of the same masonry techniques as the horizontal joints. There are no lintels above the door and window openings, or if there are any, the length of the lintels is less than 240 mm. (3) The brick masonry wall has low strength. The greatest housing wall mortar strength is between M0. 4 - 1.5, much lower than the strength of the brick. (4) The building material and construction quality are poor. The quality of the mortar masonry wall is poor. The cracks between the bricks are uneven, even in the seams.展开更多
China is a country with high seismicity. It is very important for industry and structure to fortify against earthquakes. In this paper the outline of seismicity in China, the criteria for fortification against earthqu...China is a country with high seismicity. It is very important for industry and structure to fortify against earthquakes. In this paper the outline of seismicity in China, the criteria for fortification against earthquakes and the contents of seismic zonation map of China are described. The contents of seismic safety evaluation for major construction projects, such as large dams, large bridges, long distance pipe lines for transporting oil and natural gas, nuclear plants, petrochemical enterprises and so on, are presented. Some geological disasters caused by destructive earthquake, such as earthquake caused collapse and landslide, liquefaction of saturated soil and earthquake fault and so on, are also presented. Preventive countermeasures for these disasters are discussed.展开更多
The purpose is to study the seismic reduction effect of an isolated structure,with wind-resistant bearings( WRBs) setting on its isolation layer to withstand great wind load,and the working mechanism of the WRB. In th...The purpose is to study the seismic reduction effect of an isolated structure,with wind-resistant bearings( WRBs) setting on its isolation layer to withstand great wind load,and the working mechanism of the WRB. In this paper,two isolation models with /without WRBs,taking an actual engineering as the background,are established in the finite element software ETABS. The one with WRBs has horizontal damping coefficient less than 0. 40 while the other between 0. 40 and 0. 53. WRBs are simulated by Plastic 1element and the collaborative work between them and isolation layer is described by a mechanical model. Time history analysis is conducted on the models to compare their responses under earthquake excitations. Results show that the one with WRBs,but less lead-rubber bearings( LRBs),has better damping effect than the other,although they both can meet wind requirements. It is also shown that under normal conditions and small earthquakes,WRBs function well and the isolation layer will not yield; under moderate earthquakes,WRBs will yield and be destroyed to stop functioning but without affecting the damping effect of the upper structure.Additionally, the total yield shear force provided by LRBs is proposed to be close to the standard value of wind load.展开更多
With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial ...With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial Induced Calcium Carbonate Precipitation(MICP)has been widely applied in soil stabilization and engineering geology in recent years.This study conducts experiments using Bacillus megaterium to solidify desert sand via MICP,aiming to explore its feasibility as a novel ecological method for desert protection.Experimental results indicate that desert sand treated with MICP exhibits a significant enhancement in wind erosion resistance,providing a potential solution for desert management and land restoration.展开更多
This paper deals with the design and development of the observational system of geo-electrical resistivity on the basis of the demands for exploring the temporal variations of electrical properties of Earth media in t...This paper deals with the design and development of the observational system of geo-electrical resistivity on the basis of the demands for exploring the temporal variations of electrical properties of Earth media in the fixed points of the networks, which would be associated with the earthquake preparation. The observation system is characterized by the high accuracy in measurement, long term stability in operation and high level of rejection to the environmental interference. It consists of three main parts, configuration system measurement system, the calibration and inspection system.展开更多
This paper has discussed the effective resistivity ellipse and the paradoxical phenomenon of anisotropy. Two cases have been discussed, namely: there are three measuring lines at arbitrary angles with one another and...This paper has discussed the effective resistivity ellipse and the paradoxical phenomenon of anisotropy. Two cases have been discussed, namely: there are three measuring lines at arbitrary angles with one another and there are two mutually perpendicular measuring lines and an additional measurement of the transversal effective resistivity. For these cases, the paper has given the methods for quantitatively calculating the parameters of georesistivity anisotropy. The formulae given include those for calculating the azimuth (of the principal axis of minimum resistivity ρ 1, the average resistivity ( ρ 1ρ 3) 1/2 , (ρ 2ρ 3) 1/2 , and the anisotropy coefficient λ=(ρ 2/ρ 1 ) 1/2 . As a case history, the data observed by the Datong geoelectricity station have been processed with reference to the results of in situ resistivity measurement in media subjected to shear. The results of analysis have led to the following understandings. Before and after the Datong M S6.1 earthquake on October 19, 1989, the abnormal rise of NE trending georesistivity and abnormal fall of NW trending georesistivity observed at the Datong and Yangyuan stations were caused by the pure shear acting on the medium. The major principal compression was in NE direction, which made an acute angle with the strike of the seismic fault plane, and thus there was a greater shear stress but very small normal stress so that the fault was likely to slide but the earthquake was only of moderate magnitude. The states of stress in medium were the same before and after earthquake and therefore the georesistivity precursor was of the same sign as that of co seismic variations.展开更多
Based on the geoelectric observation data of the 1976 Tangshan earthquake of M=7. 8 compiled by the Research Group on the Geoelectricity of the Tangshan Great Earthquake, a dimensionless factor S has been defined as t...Based on the geoelectric observation data of the 1976 Tangshan earthquake of M=7. 8 compiled by the Research Group on the Geoelectricity of the Tangshan Great Earthquake, a dimensionless factor S has been defined as the degree of ground resistivity anisotropy. The S values during the generation process of that earthquake have been calculated and their variations have been analyzed. The result has showed that the variation of the degree of ground resistivity anisotropy existed throughout the process of generation and occurrence of the Tangshan earthquake and the features of its pattern are representative. The S value can therefore be taken as a new precursory factor of earthquakes which can be applied together with other dimensionless factors in the analysis and prediction of earthquakes. A physical explanation of the variation of the S value has also been given.展开更多
Through systematically summarizing the observational data of earth resistivity during 26 years from nearly a hundred stations in China, the author found that the pattern of the earth resistivity (ρs) tendency variati...Through systematically summarizing the observational data of earth resistivity during 26 years from nearly a hundred stations in China, the author found that the pattern of the earth resistivity (ρs) tendency variations,based on monthly average data, could be divided into five types, three types of which were defined as anomalous variation, which have different qualitative and quantitative characteristics and different relations with earthquakes as well.The first type of tendency variation called “funnel” is related to strong earthquakes, the Second type called “scoop” has good corresponding relation with moderate earthquakes, and the third type called “tilt” has no relation with earthquakes. Preliminary discussions about the relations between the three types of ρs tendency variation patterns and earthquakes are made in this paper, according to the experimental results of pressed rocks. It is concluded that the different patterns of ρs tendency variation actually reflect the different stress conditions of underground soil-rock layers: the “funnel” type reflects high stress status, the “scoop” type shows moderate stress condition and the “tilt” type is related to stress relief. All of such knowledges mentioned above are very useful in making accurate medium-term earthquake prediction.展开更多
Large amount of practically-observed iata were analyzed hased on the principles of fracture mechanics, and it was found that the mutation of earth resistivity was, to a certain extent, corrrelated with the rupture of ...Large amount of practically-observed iata were analyzed hased on the principles of fracture mechanics, and it was found that the mutation of earth resistivity was, to a certain extent, corrrelated with the rupture of media. Among the mutation sequences before most strong and moderate earthquakes had generally a relatively obvious maximum mutation. An approximately linear relation was found between the interval from starting of the maximum mutation to the occurrence of an earthquake and the magnitude and the epicentral distance of the earthquake. Furthermore, such a mutation showed a tendency to radiate from the epicenter to the peripheral areas. It is thus thought to be possible to use the mutation sequence to predict earthquakes. Finally, the paper also unfolds discussions on a number of practical problems in the earthquake prediction practice.展开更多
Based on fracture mechanics,a large amount of practically observed data are analyzed in this paper,and it is disclosed that the earth resistivity stations around the epicenter of a strong event have shown seismically ...Based on fracture mechanics,a large amount of practically observed data are analyzed in this paper,and it is disclosed that the earth resistivity stations around the epicenter of a strong event have shown seismically an anomalous earth resistivity suddenly changed sequence.The maximum sudden change in the sequence tends to shift backward with the increase of epicentral distance,while it shifts forward with the increase of the magnitude of the earthquake.Also,the maximum sudden change expands from the epicenter to the peripheral areas.The result of study has shown that the obviousness degree of the anomalies is related to the measuring direction.The lithological contrast around the stations also influences the time of the anomaly occurrence.The maximum sudden change of the sequence will be advanced while the rock resistance to pressure is not good.On the basis of these findings,the authors propose that it might be possible to predict the three key elements of forthcoming earthquakes by using the展开更多
A trend increase in apparent resistivity has been observed in the N30°E monitoring direction at Garze Seismic Station since July 2011. This increase trend in geo-electric resistivity has been observed in the N60&...A trend increase in apparent resistivity has been observed in the N30°E monitoring direction at Garze Seismic Station since July 2011. This increase trend in geo-electric resistivity has been observed in the N60°W direction since 2012. During the period of the increase, the national highway No.317 was expanded in the monitoring area, so the potential electrodes in the N30°E direction had to be moved 10m towards the current electrodes. We interpreted the electric sounding data of Garz6 Seismic Station with a horizontally layered model. Analysis based on this model showed that the shift of potential electrodes can cause a 4 l-l.m rise to the measurements in the N30°E direction. Therefore, apparent resistivity of the two directions increased in the same time in 2012 after offsetting the effects from electrodes shift. Sensitivity coefficients of the two observation directions were also obtained using the model. Sensitivity coefficients of both directions were negative for the shallow layers, which can well explain the unexpected annual variations of Garze Seismic Station. In order to quantitatively analyze the effects from the expansion of the national highway on the observation, we constructed a finite element model based on the electrical structure. Analysis results also suggested that the expansion of the national highway could only cause a 0. 15 Ω·m decrease in the N60°W monitoring direction and 0. 1 Ω· m increase in the N30°E direction. Additionally, the valley values of annual variation of 2013 were distinctively higher than that of other years since 2008, meaning that there was an abnormal rise in apparent resistivity in the two observation directions at Garz~ Seismic Station before the Lushan earthquake. However, the rise was contrary to the decline variation before the Wenchuan earthquake. Therefore, it is still unsure whether or not the rise variation is related to the Lushan earthquake.展开更多
Near-surface earth resistivity and underground water level anomalies were recorded at Qingdao seismic observatory of Shandong Province before and after the MS8.0 Wenchuan Earthquake of May 12,2008.The observed data of...Near-surface earth resistivity and underground water level anomalies were recorded at Qingdao seismic observatory of Shandong Province before and after the MS8.0 Wenchuan Earthquake of May 12,2008.The observed data of earth resistivity at the observatory revealed that the underground water level dropped and the resistivity increased.It is postulated that in the special tectonic setting at Qingdao observatory,the variation of stress and strain caused the change of water level beneath the station,thus,leading to the variation of earth resistivity.The relationship between the variation of stress field and the change of earth resistivity before earthquake is analyzed.展开更多
The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed ...The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.展开更多
The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in...The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in a nutshell.The stability of FW patterns on end head is very sensitive to changing of pattern parameter.Consequently,its FW pattern was based on geodesic track.The FW angles and on equators depend on the dimension of end part and the condition of geodesic FW.Generally speaking, the polar holes of rocket engine shell are disproportional.Therefore,the FW angles of the shell column are changeable.The feasi- bility of nongeodesic FW of the shell column was discussed in this paper.Furthermore,it expounded the indispensable condition be- tween the length of shell column and the FW friction coefficient.At the same time,the general mathematic models of the movement control of nongeodesic FW were deduced.展开更多
The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in ...The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in the installation process of the wind turbine. The influence factors of the pile shoe's penetration depth and uplift resistance are analyzed,and the calculation model and flow of the uplift resistance are given. Based on a construction example,the influence rules are analyzed for the change of the pile shoe's structural parameters on the penetration depth and uplift resistance.The analysis results show that the penetration depth is more sensitive to the width of the pile shoe,and the height has greater influence on the uplift resistance than the length and width of the spud. With the increase of the height,the uplift resistance may increase rapidly.Although the decreases of the length,width and height of the pile shoe may reduce the uplift resistance,the penetration depth may increase in the meantime. This will increase the pulling pile time and reduce the construction efficiency. So the parameters of the pile shoe should be optimized according to the adaptable geology condition so as to obtain the optimal uplift resistance and working efficiency.展开更多
The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magne...The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magnetotelluric (MT) techniques are both used to study the deep electrical conductivity structure in this region; magnetic and gravity surveys are also performed along the profile. According to the 2-D resistivity model along the Yanyuan-Yongshan profile, a high- conductivity layer (HCL) exists widely in the crust, and a high-resistivity block (HRB) exists widely in the upper mantle in general, as seen by the fact that a large HCL exists from the western Jinpingshan tectonic zone to the eastern Mabian tectonic zone in the crust, while the HRB found in the Panxi tectonic zone is of abnormally high resistivity in that background compared to both sides of Panxi tectonic zone. In addition, the gravity and magnetic field anomalies are of high value. Combined with geological data, the results indicate that there probably exists basic or ultrabasic rock with a large thickness in the lithosphere in the Panxi axial region, which indicates that fracture activity once occurred in the lithosphere. As a result, we can infer that the high-resistivity zone in the Panxi lithosphere is the eruption channel for Permian Emeishan basalt and the accumulation channel for basic and ultrabasic rock. The seismic sources along the profile are counted according to seismic record data. The results indicate that the most violent earthquake sources are located at the binding site of the HRB and the HCL, where the tectonic activity zone is generally acknowledged to be; however, the earthquakes occurring in the HCL are not so violent, which reflects the fact that the HCL is a plastic layer, and the fracture threshold of a plastic layer is low generally, making high stress difficult to accumulate but easy to release in the layer. As a result, a higher number of smaller earthquakes occurred in the HCL at Daliangshan tectonic zone, and violent earthquakes occurred at the binding site of high- and low-resistivity blocks at the Panxi tectonic zone.展开更多
Multiple electrodes are arranged on the surfaces of cubic granite samples of different sizes according to pre-designed patterns. Smples are fully saturated with water in vacuum. Waterproof insulation glue is coated o...Multiple electrodes are arranged on the surfaces of cubic granite samples of different sizes according to pre-designed patterns. Smples are fully saturated with water in vacuum. Waterproof insulation glue is coated on the measuring surfact and asmall parts (including two arrises) of the adjacent surfeces of the saturated sample to ensure that the electric current flows only within the sample through the connection between the electrodes. The multiple electrodes are combined form arrays of different direction and specing with symmetrical four-clectrode method according to need of measuring of resistivity changing anisotropy, electric profiling and electric sounding. The samples are placed into container filled with water. The samples are uniaxially compressed along the direction parallel to the longest dimension of the cubic, and the variation of resistivity during the whole loading process is observed. In the experiments, some samples are loaded to rupture with macro-fractures, some are only loaded to the Stage, which shows obvious Precursors in variation of resistivity associated with the indication of forthcoming rupture. Finally a quantitative comparison batween the dominant orientation of pre-existing cracks in photo-micrography of unruptured Samles and those macro-fractures in ruptured sample is made, together with theirrespective resistivity changing anisotropy behaviors. The experimental results are the following: ① For measuring points in areas that are passed by craks or rupture bands, the directions of principal anisotropy axes dedued from four kinds of combined equation sets are essentially identical with each other, and accord with the orientation of cracks or main rupture bands approximately. For measuring points in areas without crack or rupture band passing through, either the directions of calculated principal anisotropy axes by different combinatorial arrays are inconsistent with each other, or the principal anisotropy axis cannot be determined, especially in the cases where the crack plane is parallel to the measuring surface.② The dominant orientation of microfractures or rupture bands shown from micrographs is close to the direction of principal anisotropy axis along which the variation in resistivity is the greaest.③ The results of electric profiling can be used for detecting the localization of cracks.展开更多
In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the st...In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.展开更多
According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification in...According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the collapse resistance of structures should be evaluated based on both the absolute seismic resistance and the corresponding design seismic intensity. For the frames with SFI from 6 to 7.5, because they have relatively low absolute seismic resistance, their collapse resistance is insufficient even when their corresponding SDCs are upgraded from B to C. Thus, further measures are needed to enhance these structures, and some suggestions are proposed.展开更多
文摘We carried out a census of the rural residential buildings of Zhongxiang area' s 17 towns. Next, we conducted a sample survey in four townships: Huji, Shipai, Zhangji, and Jiuli. According to the census and sample survey data of the rural residence buildings, we evaluated the quality and earthquake-resistant performance of the rural buildings for the various local rural residential structural types. The results showed that there are four main factors affecting the seismic performance of the local rural residences : ( 1 ) Foundations are not made appropriately ( such as by compaction or some other fill) but are built directly in the farming soil. (2) Seismic measures are not completely implemented. Structure construction measures are not in place at the junction of the vertical and horizontal wall. The vertical wall joints are not the result of the same masonry techniques as the horizontal joints. There are no lintels above the door and window openings, or if there are any, the length of the lintels is less than 240 mm. (3) The brick masonry wall has low strength. The greatest housing wall mortar strength is between M0. 4 - 1.5, much lower than the strength of the brick. (4) The building material and construction quality are poor. The quality of the mortar masonry wall is poor. The cracks between the bricks are uneven, even in the seams.
文摘China is a country with high seismicity. It is very important for industry and structure to fortify against earthquakes. In this paper the outline of seismicity in China, the criteria for fortification against earthquakes and the contents of seismic zonation map of China are described. The contents of seismic safety evaluation for major construction projects, such as large dams, large bridges, long distance pipe lines for transporting oil and natural gas, nuclear plants, petrochemical enterprises and so on, are presented. Some geological disasters caused by destructive earthquake, such as earthquake caused collapse and landslide, liquefaction of saturated soil and earthquake fault and so on, are also presented. Preventive countermeasures for these disasters are discussed.
基金National Natural Science Foundation of China(No.51108092)
文摘The purpose is to study the seismic reduction effect of an isolated structure,with wind-resistant bearings( WRBs) setting on its isolation layer to withstand great wind load,and the working mechanism of the WRB. In this paper,two isolation models with /without WRBs,taking an actual engineering as the background,are established in the finite element software ETABS. The one with WRBs has horizontal damping coefficient less than 0. 40 while the other between 0. 40 and 0. 53. WRBs are simulated by Plastic 1element and the collaborative work between them and isolation layer is described by a mechanical model. Time history analysis is conducted on the models to compare their responses under earthquake excitations. Results show that the one with WRBs,but less lead-rubber bearings( LRBs),has better damping effect than the other,although they both can meet wind requirements. It is also shown that under normal conditions and small earthquakes,WRBs function well and the isolation layer will not yield; under moderate earthquakes,WRBs will yield and be destroyed to stop functioning but without affecting the damping effect of the upper structure.Additionally, the total yield shear force provided by LRBs is proposed to be close to the standard value of wind load.
文摘With the intensification of global climate change and the worsening of land degradation,desertification has emerged as a significant global issue threatening ecosystems and human activities.The technique of Microbial Induced Calcium Carbonate Precipitation(MICP)has been widely applied in soil stabilization and engineering geology in recent years.This study conducts experiments using Bacillus megaterium to solidify desert sand via MICP,aiming to explore its feasibility as a novel ecological method for desert protection.Experimental results indicate that desert sand treated with MICP exhibits a significant enhancement in wind erosion resistance,providing a potential solution for desert management and land restoration.
文摘This paper deals with the design and development of the observational system of geo-electrical resistivity on the basis of the demands for exploring the temporal variations of electrical properties of Earth media in the fixed points of the networks, which would be associated with the earthquake preparation. The observation system is characterized by the high accuracy in measurement, long term stability in operation and high level of rejection to the environmental interference. It consists of three main parts, configuration system measurement system, the calibration and inspection system.
文摘This paper has discussed the effective resistivity ellipse and the paradoxical phenomenon of anisotropy. Two cases have been discussed, namely: there are three measuring lines at arbitrary angles with one another and there are two mutually perpendicular measuring lines and an additional measurement of the transversal effective resistivity. For these cases, the paper has given the methods for quantitatively calculating the parameters of georesistivity anisotropy. The formulae given include those for calculating the azimuth (of the principal axis of minimum resistivity ρ 1, the average resistivity ( ρ 1ρ 3) 1/2 , (ρ 2ρ 3) 1/2 , and the anisotropy coefficient λ=(ρ 2/ρ 1 ) 1/2 . As a case history, the data observed by the Datong geoelectricity station have been processed with reference to the results of in situ resistivity measurement in media subjected to shear. The results of analysis have led to the following understandings. Before and after the Datong M S6.1 earthquake on October 19, 1989, the abnormal rise of NE trending georesistivity and abnormal fall of NW trending georesistivity observed at the Datong and Yangyuan stations were caused by the pure shear acting on the medium. The major principal compression was in NE direction, which made an acute angle with the strike of the seismic fault plane, and thus there was a greater shear stress but very small normal stress so that the fault was likely to slide but the earthquake was only of moderate magnitude. The states of stress in medium were the same before and after earthquake and therefore the georesistivity precursor was of the same sign as that of co seismic variations.
文摘Based on the geoelectric observation data of the 1976 Tangshan earthquake of M=7. 8 compiled by the Research Group on the Geoelectricity of the Tangshan Great Earthquake, a dimensionless factor S has been defined as the degree of ground resistivity anisotropy. The S values during the generation process of that earthquake have been calculated and their variations have been analyzed. The result has showed that the variation of the degree of ground resistivity anisotropy existed throughout the process of generation and occurrence of the Tangshan earthquake and the features of its pattern are representative. The S value can therefore be taken as a new precursory factor of earthquakes which can be applied together with other dimensionless factors in the analysis and prediction of earthquakes. A physical explanation of the variation of the S value has also been given.
文摘Through systematically summarizing the observational data of earth resistivity during 26 years from nearly a hundred stations in China, the author found that the pattern of the earth resistivity (ρs) tendency variations,based on monthly average data, could be divided into five types, three types of which were defined as anomalous variation, which have different qualitative and quantitative characteristics and different relations with earthquakes as well.The first type of tendency variation called “funnel” is related to strong earthquakes, the Second type called “scoop” has good corresponding relation with moderate earthquakes, and the third type called “tilt” has no relation with earthquakes. Preliminary discussions about the relations between the three types of ρs tendency variation patterns and earthquakes are made in this paper, according to the experimental results of pressed rocks. It is concluded that the different patterns of ρs tendency variation actually reflect the different stress conditions of underground soil-rock layers: the “funnel” type reflects high stress status, the “scoop” type shows moderate stress condition and the “tilt” type is related to stress relief. All of such knowledges mentioned above are very useful in making accurate medium-term earthquake prediction.
文摘Large amount of practically-observed iata were analyzed hased on the principles of fracture mechanics, and it was found that the mutation of earth resistivity was, to a certain extent, corrrelated with the rupture of media. Among the mutation sequences before most strong and moderate earthquakes had generally a relatively obvious maximum mutation. An approximately linear relation was found between the interval from starting of the maximum mutation to the occurrence of an earthquake and the magnitude and the epicentral distance of the earthquake. Furthermore, such a mutation showed a tendency to radiate from the epicenter to the peripheral areas. It is thus thought to be possible to use the mutation sequence to predict earthquakes. Finally, the paper also unfolds discussions on a number of practical problems in the earthquake prediction practice.
基金This project was sponsored by the Joint Earthquake Science Foundation,China.
文摘Based on fracture mechanics,a large amount of practically observed data are analyzed in this paper,and it is disclosed that the earth resistivity stations around the epicenter of a strong event have shown seismically an anomalous earth resistivity suddenly changed sequence.The maximum sudden change in the sequence tends to shift backward with the increase of epicentral distance,while it shifts forward with the increase of the magnitude of the earthquake.Also,the maximum sudden change expands from the epicenter to the peripheral areas.The result of study has shown that the obviousness degree of the anomalies is related to the measuring direction.The lithological contrast around the stations also influences the time of the anomaly occurrence.The maximum sudden change of the sequence will be advanced while the rock resistance to pressure is not good.On the basis of these findings,the authors propose that it might be possible to predict the three key elements of forthcoming earthquakes by using the
基金supported by the National Science and Technology Support Program(2012BAK19B02-03)Natural Science Foundation of China(41204057)
文摘A trend increase in apparent resistivity has been observed in the N30°E monitoring direction at Garze Seismic Station since July 2011. This increase trend in geo-electric resistivity has been observed in the N60°W direction since 2012. During the period of the increase, the national highway No.317 was expanded in the monitoring area, so the potential electrodes in the N30°E direction had to be moved 10m towards the current electrodes. We interpreted the electric sounding data of Garz6 Seismic Station with a horizontally layered model. Analysis based on this model showed that the shift of potential electrodes can cause a 4 l-l.m rise to the measurements in the N30°E direction. Therefore, apparent resistivity of the two directions increased in the same time in 2012 after offsetting the effects from electrodes shift. Sensitivity coefficients of the two observation directions were also obtained using the model. Sensitivity coefficients of both directions were negative for the shallow layers, which can well explain the unexpected annual variations of Garze Seismic Station. In order to quantitatively analyze the effects from the expansion of the national highway on the observation, we constructed a finite element model based on the electrical structure. Analysis results also suggested that the expansion of the national highway could only cause a 0. 15 Ω·m decrease in the N60°W monitoring direction and 0. 1 Ω· m increase in the N30°E direction. Additionally, the valley values of annual variation of 2013 were distinctively higher than that of other years since 2008, meaning that there was an abnormal rise in apparent resistivity in the two observation directions at Garz~ Seismic Station before the Lushan earthquake. However, the rise was contrary to the decline variation before the Wenchuan earthquake. Therefore, it is still unsure whether or not the rise variation is related to the Lushan earthquake.
基金supported by Natural Science Fondation of Shandong Province(ZR2010DM008)National Natural Science Foundation(40534023, 41074047),China
文摘Near-surface earth resistivity and underground water level anomalies were recorded at Qingdao seismic observatory of Shandong Province before and after the MS8.0 Wenchuan Earthquake of May 12,2008.The observed data of earth resistivity at the observatory revealed that the underground water level dropped and the resistivity increased.It is postulated that in the special tectonic setting at Qingdao observatory,the variation of stress and strain caused the change of water level beneath the station,thus,leading to the variation of earth resistivity.The relationship between the variation of stress field and the change of earth resistivity before earthquake is analyzed.
基金supported by the National Key R&D Program of China“Response-driven intelligent enhanced analysis and control for bulk power system stability”(No.2021YFB2400800)。
文摘The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.
文摘The FW process is a prefect method of manufacturing FRP composite air vessel resisting high pressure and aerial press vessel.In this paper FW pattern of FRP composite air vessel resisting high pressure was analyzed in a nutshell.The stability of FW patterns on end head is very sensitive to changing of pattern parameter.Consequently,its FW pattern was based on geodesic track.The FW angles and on equators depend on the dimension of end part and the condition of geodesic FW.Generally speaking, the polar holes of rocket engine shell are disproportional.Therefore,the FW angles of the shell column are changeable.The feasi- bility of nongeodesic FW of the shell column was discussed in this paper.Furthermore,it expounded the indispensable condition be- tween the length of shell column and the FW friction coefficient.At the same time,the general mathematic models of the movement control of nongeodesic FW were deduced.
基金Department of Transportation Technology of Construction Project,China(No.2013328225080)Natural Science Foundation of Liaoning Province,China(No.2015020121)the Fundamental Research Funds for the Central Universities,China(Nos.3132015087,3132014303)
文摘The uplift resistance calculation is an important basis for the construction decisions of the jack-up wind installation vessel and the design of the jacking system,and determines the operation risk and reliability in the installation process of the wind turbine. The influence factors of the pile shoe's penetration depth and uplift resistance are analyzed,and the calculation model and flow of the uplift resistance are given. Based on a construction example,the influence rules are analyzed for the change of the pile shoe's structural parameters on the penetration depth and uplift resistance.The analysis results show that the penetration depth is more sensitive to the width of the pile shoe,and the height has greater influence on the uplift resistance than the length and width of the spud. With the increase of the height,the uplift resistance may increase rapidly.Although the decreases of the length,width and height of the pile shoe may reduce the uplift resistance,the penetration depth may increase in the meantime. This will increase the pulling pile time and reduce the construction efficiency. So the parameters of the pile shoe should be optimized according to the adaptable geology condition so as to obtain the optimal uplift resistance and working efficiency.
基金supported by National High-Tech R&D Program of China (Grant 2014AA06A612)the project of the China Geological Survey (Grants 1212011220263,1212010914049 and 1212011121273)
文摘The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magnetotelluric (MT) techniques are both used to study the deep electrical conductivity structure in this region; magnetic and gravity surveys are also performed along the profile. According to the 2-D resistivity model along the Yanyuan-Yongshan profile, a high- conductivity layer (HCL) exists widely in the crust, and a high-resistivity block (HRB) exists widely in the upper mantle in general, as seen by the fact that a large HCL exists from the western Jinpingshan tectonic zone to the eastern Mabian tectonic zone in the crust, while the HRB found in the Panxi tectonic zone is of abnormally high resistivity in that background compared to both sides of Panxi tectonic zone. In addition, the gravity and magnetic field anomalies are of high value. Combined with geological data, the results indicate that there probably exists basic or ultrabasic rock with a large thickness in the lithosphere in the Panxi axial region, which indicates that fracture activity once occurred in the lithosphere. As a result, we can infer that the high-resistivity zone in the Panxi lithosphere is the eruption channel for Permian Emeishan basalt and the accumulation channel for basic and ultrabasic rock. The seismic sources along the profile are counted according to seismic record data. The results indicate that the most violent earthquake sources are located at the binding site of the HRB and the HCL, where the tectonic activity zone is generally acknowledged to be; however, the earthquakes occurring in the HCL are not so violent, which reflects the fact that the HCL is a plastic layer, and the fracture threshold of a plastic layer is low generally, making high stress difficult to accumulate but easy to release in the layer. As a result, a higher number of smaller earthquakes occurred in the HCL at Daliangshan tectonic zone, and violent earthquakes occurred at the binding site of high- and low-resistivity blocks at the Panxi tectonic zone.
文摘Multiple electrodes are arranged on the surfaces of cubic granite samples of different sizes according to pre-designed patterns. Smples are fully saturated with water in vacuum. Waterproof insulation glue is coated on the measuring surfact and asmall parts (including two arrises) of the adjacent surfeces of the saturated sample to ensure that the electric current flows only within the sample through the connection between the electrodes. The multiple electrodes are combined form arrays of different direction and specing with symmetrical four-clectrode method according to need of measuring of resistivity changing anisotropy, electric profiling and electric sounding. The samples are placed into container filled with water. The samples are uniaxially compressed along the direction parallel to the longest dimension of the cubic, and the variation of resistivity during the whole loading process is observed. In the experiments, some samples are loaded to rupture with macro-fractures, some are only loaded to the Stage, which shows obvious Precursors in variation of resistivity associated with the indication of forthcoming rupture. Finally a quantitative comparison batween the dominant orientation of pre-existing cracks in photo-micrography of unruptured Samles and those macro-fractures in ruptured sample is made, together with theirrespective resistivity changing anisotropy behaviors. The experimental results are the following: ① For measuring points in areas that are passed by craks or rupture bands, the directions of principal anisotropy axes dedued from four kinds of combined equation sets are essentially identical with each other, and accord with the orientation of cracks or main rupture bands approximately. For measuring points in areas without crack or rupture band passing through, either the directions of calculated principal anisotropy axes by different combinatorial arrays are inconsistent with each other, or the principal anisotropy axis cannot be determined, especially in the cases where the crack plane is parallel to the measuring surface.② The dominant orientation of microfractures or rupture bands shown from micrographs is close to the direction of principal anisotropy axis along which the variation in resistivity is the greaest.③ The results of electric profiling can be used for detecting the localization of cracks.
文摘In this paper, using the theory of stochastic analysis of the response to earthquake load, a stochastic analysis method of the response of piled platforms to earthquake load has been established. In the method, the strong ground motion is considered as three dimensional stationary white noise process and the pile-soil interaction and water-structure interaction are considered. The stochastic response of a typical platform to earthquake load has been computed with this method and the results compared with those obtained with the response spectrum analysis method. The comparison shows that the stochastic analysis method of the response of piled platforms to earthquake load is suitable for this kind of analysis.
基金National Science Foundation of China Under Grant No.90815025&51178249the National Key Technologies R&D Program Under Grant No.2009BAJ28B01&2006BAJ03A02-01+1 种基金Tsinghua University Research Funds No.2010THZ02-1the Program for New Century Excellent Talents in University
文摘According to the Code for Seismic Design of Buildings (GB50011-2001), ten typical reinforced concrete (RC) frame structures, used as school classroom buildings, are designed with different seismic fortification intensities (SFIs) (SFI=6 to 8.5) and different seismic design categories (SDCs) (SDC=B and C). The collapse resistance of the frames with SDC=B and C in terms of collapse fragility curves are quantitatively evaluated and compared via incremental dynamic analysis (IDA). The results show that the collapse resistance of structures should be evaluated based on both the absolute seismic resistance and the corresponding design seismic intensity. For the frames with SFI from 6 to 7.5, because they have relatively low absolute seismic resistance, their collapse resistance is insufficient even when their corresponding SDCs are upgraded from B to C. Thus, further measures are needed to enhance these structures, and some suggestions are proposed.