In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the o...In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the observation data of the tectonic environment monitoring network in Chinese Mainland. The deformation characteristics of the crust before the earthquake were discussed through inter-station baseline time series analysis and the strain time series analysis in the epicentral region. The results show that a trend turn of the baseline movement state around the epicenter region occurred after 2014,and the movement after 2014 reflects an obvious decreasing trend of compressional deformation.During this period,the stress field energy was in a certain accumulation state. Since the beginning of 2014,the EW-component linear strain and surface strain rate weakened gradually before the earthquake. It shows that there was an obvious deformation deficit at the epicentral area in the past two years,which indicates that the region accumulated a high degree of strain energy before the earthquake. Therefore,there was a significant background change in the area before the earthquake. The results of the study can provide basic research data for understanding the seismogenic process and mechanism of this earthquake.展开更多
In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displac...In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displacement time series data in the south segment of Longmenshan fault zone,and the rigid and elastic-plastic block motion model is used to calculate the strain parameters in each subarea. Conjoint analysis of displacement,velocity of each station and strain parameters of each subarea reveals that the influence of the Wenchuan earthquake on the south segment of Longmenshan fault zone increases from southeast to northwest,causing a highest deformation rate 6 times the background value and heightening the influence of the hidden faults on the difference of the earth surface along its two sides,which leads to the seismic risk of the southern segment increasing from north to south. The comparison of seismic risk among subareas based on the tectonic and seismicity background indicates that the most dangerous area is on the southeast of Longmenshan faults,and the background strain accumulation and the promoting effect of the Wenchuan earthquake advanced the occurrence of Lushan earthquake and the sinistral strike-slip on the rupture plane. The Wenchuan earthquake also caused a slight two-year long continuous strain release in the south segment of Xianshuihe fault,but the influence is far less than the effect of the compressive strain caused by the Sichuan-Yunnan block.展开更多
基金funded by the Earthquake Science and Technology Development Fund of GEA(Grant No.2016M02,2016Y02)the Earthquake Tracking Task of CEA(2017010221)+1 种基金the Fund of Science for Earthquake Resilience,CEA,(XH16038Y,XH14049)Grant of National Natural Science Foundation of China(51408567,41304048)
文摘In order to study the characteristics of crustal deformation around the epicenter before the 2016 M_S6. 4 Menyuan earthquake,the GPS continuous stations of the period from 2010 to 2016 were selected according to the observation data of the tectonic environment monitoring network in Chinese Mainland. The deformation characteristics of the crust before the earthquake were discussed through inter-station baseline time series analysis and the strain time series analysis in the epicentral region. The results show that a trend turn of the baseline movement state around the epicenter region occurred after 2014,and the movement after 2014 reflects an obvious decreasing trend of compressional deformation.During this period,the stress field energy was in a certain accumulation state. Since the beginning of 2014,the EW-component linear strain and surface strain rate weakened gradually before the earthquake. It shows that there was an obvious deformation deficit at the epicentral area in the past two years,which indicates that the region accumulated a high degree of strain energy before the earthquake. Therefore,there was a significant background change in the area before the earthquake. The results of the study can provide basic research data for understanding the seismogenic process and mechanism of this earthquake.
基金sponsored by the Director Fund of Institute of Seismology,China Earthquake Administration(IS201526240)Data Sharing Special Project of the Ministry of Science and Technology,the People's Republic of China(IS20135065)
文摘In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displacement time series data in the south segment of Longmenshan fault zone,and the rigid and elastic-plastic block motion model is used to calculate the strain parameters in each subarea. Conjoint analysis of displacement,velocity of each station and strain parameters of each subarea reveals that the influence of the Wenchuan earthquake on the south segment of Longmenshan fault zone increases from southeast to northwest,causing a highest deformation rate 6 times the background value and heightening the influence of the hidden faults on the difference of the earth surface along its two sides,which leads to the seismic risk of the southern segment increasing from north to south. The comparison of seismic risk among subareas based on the tectonic and seismicity background indicates that the most dangerous area is on the southeast of Longmenshan faults,and the background strain accumulation and the promoting effect of the Wenchuan earthquake advanced the occurrence of Lushan earthquake and the sinistral strike-slip on the rupture plane. The Wenchuan earthquake also caused a slight two-year long continuous strain release in the south segment of Xianshuihe fault,but the influence is far less than the effect of the compressive strain caused by the Sichuan-Yunnan block.