Water flow from an artesian well stopped on December 17, 2007 but recovered when the Wenchuan Ms 8.0 earthquake occurred on May 12, 2008. This well is located 90 km south of the epicenter in an extensional tectonic se...Water flow from an artesian well stopped on December 17, 2007 but recovered when the Wenchuan Ms 8.0 earthquake occurred on May 12, 2008. This well is located 90 km south of the epicenter in an extensional tectonic setting, where similar changes of water level and resistivity were observed at two other nearby sites. Our investigation suggests that this phenomenon was not caused by environmental disturbances, such as drought or borehole-drilling activity, but might be a precursor to the earthquake.展开更多
This thesis discusses the earthquake reflecting ability of the observation well pattern system of Jiangsu Province, China, which has been digitally renovated, and probes into the cause of the major differences in the ...This thesis discusses the earthquake reflecting ability of the observation well pattern system of Jiangsu Province, China, which has been digitally renovated, and probes into the cause of the major differences in the earthquake reflecting abilities of well holes at different measurement points. This is achieved through the analysis of the co-seismic responses to the Wenchuan (2008; Ms8.0, China) and Tohoku (2011; Ms9.0, Japan) earthquakes. We found that the co-seismic response of water level from regional well holes in Jiangsu Province was stronger than that of water temperature. The water-level co-seismic response follows a consistent law and is closely related to the earthquake magnitude. The co-seismic response of water temperature strongly varied among well points, and was more often manifested as a slow restorative change. The co-seismic responses also varied based on tectonic elements. The response in central and northern Jiangsu was weaker than that of southern Jiangsu, possibly due to the thicker loess cover layer in central Jiangsu which makes it less effective at capturing the micro-changes of stress-strain states relative to the hilly land in the south. The more complicated geological structure in southern Jiangsu makes it contribute to greater changes in the state of underground water after a minor disturbance.展开更多
Co-seismic water-level and temperature changes of the 2008 magnitude - 8.0 Wenchuan and the 2011 magnitude-9.0 Japan earthquakes recorded at 10 observation wells in Jiangsu province are presented and analyzed. The dat...Co-seismic water-level and temperature changes of the 2008 magnitude - 8.0 Wenchuan and the 2011 magnitude-9.0 Japan earthquakes recorded at 10 observation wells in Jiangsu province are presented and analyzed. The data show that water level responded more regularly with earthquake magnitude and dis- tance than water temperature. The response was different for wells located in different tectonic units, being weaker in central and northern plain, which has a relatively thick surface layer of loess, than southern Jiangsu, which is hilly.展开更多
The Kunlunshan Mountain Ms8.1 earthquake, occurred in Nov.14, 2001, is the first event with magnitude more than 8 in the China earthquake monitoring history, specifically at the beginning of digital techniques in prec...The Kunlunshan Mountain Ms8.1 earthquake, occurred in Nov.14, 2001, is the first event with magnitude more than 8 in the China earthquake monitoring history, specifically at the beginning of digital techniques in precursor monitoring networks. Any investigation of recorded data on this earthquake is very important for testing the operation of the digital monitoring networks and understanding the preparation, occurrence, and adjustment of stress/strain of strong continental earthquakes. In this paper we investigated the coseismic response changes of well water level of groundwater and volume strain meter of bore hole in digital earthquake monitoring network of Capital area and its vicinity, due to the Nov.14, 2001 Ms8.1 Kunlun Mountain earthquake. The responding time, shapes or manners, amplitudes, and lasting time of well water level and strain-meters to seismic wave are studied in comparison. Then we discussed the possibility that the response changes of groundwater to strong distant earthquakes can be understood as one kind of observing evidence of stress/strain changes induced by distant earthquake.展开更多
Heat flow is inevitably accompanied by temperature change,thus,the water temperature coseismic response during earthquake activity should also obey the laws of thermodynamics.Taking the M S8.0 Wenchuan,Sichuan,China e...Heat flow is inevitably accompanied by temperature change,thus,the water temperature coseismic response during earthquake activity should also obey the laws of thermodynamics.Taking the M S8.0 Wenchuan,Sichuan,China earthquake and the M9.0Tohoku,Japan earthquake as an example,and based on the data of water temperature coseismic responses observed in well ZK26 in Haikou,Hainan Province,China,we investigate the relationship between well water temperature change and heat transfer in the coseismic response process and the relevant thermodynamic mechanism by using the numerical simulation method for thermodynamic equations.Then,through forward modeling,we obtain several simulation curves of water temperature change in response to earthquakes along the well depth at different times.The simulated curves of water temperature change approximately fit the observed curves.Consequently,based on the variation of temperature,we find that the modes of well water temperature coseismic response( ascending,descending or stable) are related to factors such as the location of sensors,distribution and location of heat sources,the span between sensors and heat sources.展开更多
On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no act...On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no active fault had been previously identified.This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method,and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion.The relocation and the inversion indicate,the Pingyuan MW5.5 earthquake was caused by a rupture on a buried fault,likely an extensive segment of the Gaotang fault.This buried fault exhibited a dip of approximately 75°to the northwest,with a strike of 222°,similar to the Gaotang fault.The rupture initiated at the depth of 18.6 km and propagated upward and northeastward.However,the ground surface was not broken.The total duration of the rupture was~6.0 s,releasing the scalar moment of 2.5895×1017 N·m,equivalent to MW5.54.The moment rate reached the maximum only 1.4 seconds after the rupture initiation,and the 90%scalar moment was released in the first 4.6 s.In the first 1.4 seconds of the rupture process,the rupture velocity was estimated to be 2.6 km/s,slower than the local S-wave velocity.As the rupture neared its end,the rupture velocity decreased significantly.This study provides valuable insights into the seismic characteristics of the Pingyuan MW5.5 earthquake,shedding light on the previously unidentified buried fault responsible for the seismic activity in the region.Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future.展开更多
On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtre...On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtrending Lajishan fault(LJSF),a large tectonic transformation zone.After this event,China Earthquake Networks Center(CENC)has timely published several reports about seismic sources for emergency responses.The earthquake early warning system issued the first alert 4.9 s after the earthquake occurrence,providing prompt notification that effectively mitigated panics,injuries,and deaths of residents.The near real-time focal mechanism solution indicates that this earthquake is associated with a thrust fault.The distribution of aftershocks,the rupture process,and the recorded amplitudes from seismic monitoring and GNSS stations,all suggest that the mainshock rupture predominately propagates to the northwest direction.The duration of the rupture process is~12 s,and the largest slip is located at approximately 6.3 km to the NNW from the epicenter,with a peak slip of 0.12 m at~8 km depth.Seismic station N0028 recorded the highest instrumental intensity,which is 9.4 on the Mercalli scale.The estimated intensity map shows a seismic intensity reaching up to IX near the rupture area,consistent with field survey results.The aftershocks(up to December 22,2023)are mostly distributed in the northwest direction within~20 km of the epicenter.This earthquake caused serious casualties and house collapses,which requires further investigations into the impact of this earthquake.展开更多
On December 18, 2023, the M_(S)6.2 Jishishan earthquake occurred in the northeastern region of the QinghaiXizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study,we i...On December 18, 2023, the M_(S)6.2 Jishishan earthquake occurred in the northeastern region of the QinghaiXizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study,we integrate space imaging geodesy, finite fault inversion, and back-projection methods to decipher its rupture property, including fault geometry, coseismic slip distribution, rupture direction, and propagation speed. The results reveal that the seismogenic fault dips to the southwest at an angle of 29°. The major slip asperity is dominated by reverse slip and is concentrated within a depth range of 7–16 km, which explains the significant uplift near the epicenter observed by both the Sentinel-1 ascending and descending In SAR data. Moreover, the teleseismic array waveforms indicate a northwest propagating rupture with an overall slow rupture velocity of~1.91 km/s(AK array) or 1.01 km/s(AU array).展开更多
The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake moni...The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster.展开更多
On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage ...On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area.展开更多
Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the eff...Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.展开更多
Türkiye is located in a seismically active region,where the Anatolian,African,and Arabian tectonic plates converge.High seismic hazards cause the region to be struck repeatedly by major earthquakes.On February 06...Türkiye is located in a seismically active region,where the Anatolian,African,and Arabian tectonic plates converge.High seismic hazards cause the region to be struck repeatedly by major earthquakes.On February 06,2023,a devastating M_(W)7.7 earthquake struck Türkiye at 01:17 am local time(01:17 UTC).In this regard,near and far-field ground motion data within the distance of 120 km are compiled and later characterized to identify the key ground motion intensity measures.Additionally,the vertical components of ground motions were examined to capture the complete three-dimensional nature of the seismic event.Moreover,the effect of Pulse-Like(PL)and Non-Pulse-Like(NPL)ground motion on a representative RC frame structure built as per the Türkiye code was investigated.The results indicate that PL behavior was observed in both horizontal and vertical components of ground motions and PL behavior were noted both near the epicenter and at higher distances from the epicenter.Moreover,the ratio of the peak vertical acceleration to peak horizontal acceleration at certain stations was found to be close to 1.Finally,the non-linear time history analysis of the representative reinforced concrete frame structure for ground motions recorded at stations located equidistant from the epicenter,indicated that PL ground motions led to more significant damage compared to NPL ground motions.展开更多
On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of t...On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 tha...On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk.展开更多
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
We systematically analyze coseismic responses and post-seismic characteristics of groundwater levels in the Three Gorges well-network to the Ms8.0 Wenchuan earthquake on 12 May 2008. The results indicate that these ch...We systematically analyze coseismic responses and post-seismic characteristics of groundwater levels in the Three Gorges well-network to the Ms8.0 Wenchuan earthquake on 12 May 2008. The results indicate that these characteristics differ among wells. On the conditions of similar borehole configurations, the differences are associated with geological structural sites of wells, burial types of aquifers monitored, and transmissivities of aquifer systems. We explored coseismic and post-seismic step-rise and step-drop mechanical mechanisms and their implication to earthquake prediction. We validated the inference that the residual step-rise zone is a possible earthquake risk zone based on recent seismic activity on the Xiannüshan fault in the area.展开更多
In this paper, through the nonlinear response of rock strain and stress, we have analized the physical mechanism of loading and unloading response ratio of the well level to the earth tides,the respouse of an aquife...In this paper, through the nonlinear response of rock strain and stress, we have analized the physical mechanism of loading and unloading response ratio of the well level to the earth tides,the respouse of an aquifer of confined well to bulk strain tide and showed two methods of the calculation of loading and unloading response ratio of the well level to the earth tides. We took the example of the Yu 01 well, which is near the epicenter of Heze M S 5.9 earthquake, calculated the response rate and loading and unloading response ratio of two kinds of the earth tides of it. The response rate and response ratio before the earthquake had the variation of increase.展开更多
Based on the systematical collection and processing of data on the influence of mining-induced earthquakes on water table regime in deep well Lu-15 in Taozhuang Coal Mine since 1980, we study the characteristics of co...Based on the systematical collection and processing of data on the influence of mining-induced earthquakes on water table regime in deep well Lu-15 in Taozhuang Coal Mine since 1980, we study the characteristics of coseismic effect of water table in deep well in this paper. We have found precursory phenomena of water table in deep well before mining-induced earthquake. Here we discuss the physical mechanism of coseismic effect of mining--induced earthquake on water table in deep well.展开更多
At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is es...At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.展开更多
基金supported by the National Natural Science Foundation ofChina(40930637)Basic Science Research Special Item of the Instituteof Geology,China Earthquake Administration(DF-IGCEA-0608210)Special Research Program of China Earthquake Administration(200808079)
文摘Water flow from an artesian well stopped on December 17, 2007 but recovered when the Wenchuan Ms 8.0 earthquake occurred on May 12, 2008. This well is located 90 km south of the epicenter in an extensional tectonic setting, where similar changes of water level and resistivity were observed at two other nearby sites. Our investigation suggests that this phenomenon was not caused by environmental disturbances, such as drought or borehole-drilling activity, but might be a precursor to the earthquake.
基金supported by the Scientific and Technological Support Project of Jiangsu Province (No.BS2007084)Seismic Technology Spark Project (No.XH12020)
文摘This thesis discusses the earthquake reflecting ability of the observation well pattern system of Jiangsu Province, China, which has been digitally renovated, and probes into the cause of the major differences in the earthquake reflecting abilities of well holes at different measurement points. This is achieved through the analysis of the co-seismic responses to the Wenchuan (2008; Ms8.0, China) and Tohoku (2011; Ms9.0, Japan) earthquakes. We found that the co-seismic response of water level from regional well holes in Jiangsu Province was stronger than that of water temperature. The water-level co-seismic response follows a consistent law and is closely related to the earthquake magnitude. The co-seismic response of water temperature strongly varied among well points, and was more often manifested as a slow restorative change. The co-seismic responses also varied based on tectonic elements. The response in central and northern Jiangsu was weaker than that of southern Jiangsu, possibly due to the thicker loess cover layer in central Jiangsu which makes it less effective at capturing the micro-changes of stress-strain states relative to the hilly land in the south. The more complicated geological structure in southern Jiangsu makes it contribute to greater changes in the state of underground water after a minor disturbance.
文摘Co-seismic water-level and temperature changes of the 2008 magnitude - 8.0 Wenchuan and the 2011 magnitude-9.0 Japan earthquakes recorded at 10 observation wells in Jiangsu province are presented and analyzed. The data show that water level responded more regularly with earthquake magnitude and dis- tance than water temperature. The response was different for wells located in different tectonic units, being weaker in central and northern plain, which has a relatively thick surface layer of loess, than southern Jiangsu, which is hilly.
基金supported by Natural Science Foundation of China(41274061 and 40374019)
文摘The Kunlunshan Mountain Ms8.1 earthquake, occurred in Nov.14, 2001, is the first event with magnitude more than 8 in the China earthquake monitoring history, specifically at the beginning of digital techniques in precursor monitoring networks. Any investigation of recorded data on this earthquake is very important for testing the operation of the digital monitoring networks and understanding the preparation, occurrence, and adjustment of stress/strain of strong continental earthquakes. In this paper we investigated the coseismic response changes of well water level of groundwater and volume strain meter of bore hole in digital earthquake monitoring network of Capital area and its vicinity, due to the Nov.14, 2001 Ms8.1 Kunlun Mountain earthquake. The responding time, shapes or manners, amplitudes, and lasting time of well water level and strain-meters to seismic wave are studied in comparison. Then we discussed the possibility that the response changes of groundwater to strong distant earthquakes can be understood as one kind of observing evidence of stress/strain changes induced by distant earthquake.
基金sponsored by the Spark Program of 2011,China Earthquake Administration(XH1020)the Basic Research Program of the Hainan Province(ZDXM20110107)
文摘Heat flow is inevitably accompanied by temperature change,thus,the water temperature coseismic response during earthquake activity should also obey the laws of thermodynamics.Taking the M S8.0 Wenchuan,Sichuan,China earthquake and the M9.0Tohoku,Japan earthquake as an example,and based on the data of water temperature coseismic responses observed in well ZK26 in Haikou,Hainan Province,China,we investigate the relationship between well water temperature change and heat transfer in the coseismic response process and the relevant thermodynamic mechanism by using the numerical simulation method for thermodynamic equations.Then,through forward modeling,we obtain several simulation curves of water temperature change in response to earthquakes along the well depth at different times.The simulated curves of water temperature change approximately fit the observed curves.Consequently,based on the variation of temperature,we find that the modes of well water temperature coseismic response( ascending,descending or stable) are related to factors such as the location of sensors,distribution and location of heat sources,the span between sensors and heat sources.
基金support from the National Natural Science Foundation of China(Nos.42104043,42374081,and U2039208)the Fundamental Research Funds for the Institute of Geophysics,China Earthquake Administration(No.DQJB22R35).
文摘On August 6,2023,a magnitude MW5.5 earthquake struck Pingyuan County,Dezhou City,Shandong Province,China.This event was significant as no large earthquakes had been recorded in the region for over a century,and no active fault had been previously identified.This study collects 1309 P-wave arrival times and 866 S-wave arrival times from 74 seismic stations less than 200 km to the epicenter to constrain the spatial distribution of the mainshock and its 125 early aftershocks by the double difference earthquake relocation method,and selects 864 P-waveforms from 288 stations located within 800 km of the epicenter to constrain the focal mechanism solution of the mainshock through centroid moment tensor inversion.The relocation and the inversion indicate,the Pingyuan MW5.5 earthquake was caused by a rupture on a buried fault,likely an extensive segment of the Gaotang fault.This buried fault exhibited a dip of approximately 75°to the northwest,with a strike of 222°,similar to the Gaotang fault.The rupture initiated at the depth of 18.6 km and propagated upward and northeastward.However,the ground surface was not broken.The total duration of the rupture was~6.0 s,releasing the scalar moment of 2.5895×1017 N·m,equivalent to MW5.54.The moment rate reached the maximum only 1.4 seconds after the rupture initiation,and the 90%scalar moment was released in the first 4.6 s.In the first 1.4 seconds of the rupture process,the rupture velocity was estimated to be 2.6 km/s,slower than the local S-wave velocity.As the rupture neared its end,the rupture velocity decreased significantly.This study provides valuable insights into the seismic characteristics of the Pingyuan MW5.5 earthquake,shedding light on the previously unidentified buried fault responsible for the seismic activity in the region.Understanding the behavior of such faults is crucial for assessing seismic hazards and enhancing earthquake preparedness in the future.
基金supported by China Earthquake Administration Science for Earthquake Resilience(XH23050YB)Natural Science Foundation of China(42304072).
文摘On December 18,2023,the Jishishan area in Gansu Province was jolted by a M_(S) 6.2 earthquake,which is the most powerful seismic event that occurred throughout the year in China.The earthquake occurred along the NWtrending Lajishan fault(LJSF),a large tectonic transformation zone.After this event,China Earthquake Networks Center(CENC)has timely published several reports about seismic sources for emergency responses.The earthquake early warning system issued the first alert 4.9 s after the earthquake occurrence,providing prompt notification that effectively mitigated panics,injuries,and deaths of residents.The near real-time focal mechanism solution indicates that this earthquake is associated with a thrust fault.The distribution of aftershocks,the rupture process,and the recorded amplitudes from seismic monitoring and GNSS stations,all suggest that the mainshock rupture predominately propagates to the northwest direction.The duration of the rupture process is~12 s,and the largest slip is located at approximately 6.3 km to the NNW from the epicenter,with a peak slip of 0.12 m at~8 km depth.Seismic station N0028 recorded the highest instrumental intensity,which is 9.4 on the Mercalli scale.The estimated intensity map shows a seismic intensity reaching up to IX near the rupture area,consistent with field survey results.The aftershocks(up to December 22,2023)are mostly distributed in the northwest direction within~20 km of the epicenter.This earthquake caused serious casualties and house collapses,which requires further investigations into the impact of this earthquake.
基金supported by the Open Fund of Hubei Luojia Laboratory(230100015)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB41000000)the Knowledge Innovation Program of Wuhan-Shuguang Project(2023010201020281).
文摘On December 18, 2023, the M_(S)6.2 Jishishan earthquake occurred in the northeastern region of the QinghaiXizang Plateau, causing heavy casualties and property damage in Gansu and Qinghai Provinces. In this study,we integrate space imaging geodesy, finite fault inversion, and back-projection methods to decipher its rupture property, including fault geometry, coseismic slip distribution, rupture direction, and propagation speed. The results reveal that the seismogenic fault dips to the southwest at an angle of 29°. The major slip asperity is dominated by reverse slip and is concentrated within a depth range of 7–16 km, which explains the significant uplift near the epicenter observed by both the Sentinel-1 ascending and descending In SAR data. Moreover, the teleseismic array waveforms indicate a northwest propagating rupture with an overall slow rupture velocity of~1.91 km/s(AK array) or 1.01 km/s(AU array).
文摘The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster.
基金supported by the National Natural Science Foundation of China project (No. 42372339)the China Geological Survey Project (Nos. DD20221816, DD20190319)。
文摘On September 5, 2022, a magnitude Ms 6.8 earthquake occurred along the Moxi fault in the southern part of the Xianshuihe fault zone located in the southeastern margin of the Tibetan Plateau,resulting in severe damage and substantial economic loss. In this study, we established a coseismic landslide database triggered by Luding Ms 6.8 earthquake, which includes 4794 landslides with a total area of 46.79 km^(2). The coseismic landslides primarily consisted of medium and small-sized landslides, characterized by shallow surface sliding. Some exhibited characteristics of high-position initiation resulted in the obstruction or partial obstruction of rivers, leading to the formation of dammed lakes. Our research found that the coseismic landslides were predominantly observed on slopes ranging from 30° to 50°, occurring at between 1000 m and 2500 m, with slope aspects varying from 90° to 180°. Landslides were also highly developed in granitic bodies that had experienced structural fracturing and strong-tomoderate weathering. Coseismic landslides concentrated within a 6 km range on both sides of the Xianshuihe and Daduhe fault zones. The area and number of coseismic landslides exhibited a negative correlation with the distance to fault lines, road networks, and river systems, as they were influenced by fault activity, road excavation, and river erosion. The coseismic landslides were mainly distributed in the southeastern region of the epicenter, exhibiting relatively concentrated patterns within the IX-degree zones such as Moxi Town, Wandong River basin, Detuo Town to Wanggangping Township. Our research findings provide important data on the coseismic landslides triggered by the Luding Ms 6.8 earthquake and reveal the spatial distribution patterns of these landslides. These findings can serve as important references for risk mitigation, reconstruction planning, and regional earthquake disaster research in the earthquake-affected area.
基金supported by the project of the China Geological Survey(No.DD20221746)the National Natural Science Foundation of China(Grant Nos.41101086)。
文摘Xinqiao Gully is located in the area of the 2008 Wenchuan M_(s)8.0 earthquake in Sichuan province,China.Based on the investigation of the 2023"6-26"Xinqiao Gully debris flow event,this study assessed the effectiveness of the debris flow control project and evaluated the debris flow hazards.Through field investigation and numerical simulation methods,the indicators of flow intensity reduction rate and storage capacity fullness were proposed to quantify the effectiveness of the engineering measures in the debris flow event.The simulation results show that the debris flow control project reduced the flow intensity by41.05%to 64.61%.The storage capacity of the dam decreases gradually from upstream to the mouth of the gully,thus effectively intercepting and controlling the debris flow.By evaluating the debris flow of different recurrence intervals,further measures are recommended for managing debris flow events.
文摘Türkiye is located in a seismically active region,where the Anatolian,African,and Arabian tectonic plates converge.High seismic hazards cause the region to be struck repeatedly by major earthquakes.On February 06,2023,a devastating M_(W)7.7 earthquake struck Türkiye at 01:17 am local time(01:17 UTC).In this regard,near and far-field ground motion data within the distance of 120 km are compiled and later characterized to identify the key ground motion intensity measures.Additionally,the vertical components of ground motions were examined to capture the complete three-dimensional nature of the seismic event.Moreover,the effect of Pulse-Like(PL)and Non-Pulse-Like(NPL)ground motion on a representative RC frame structure built as per the Türkiye code was investigated.The results indicate that PL behavior was observed in both horizontal and vertical components of ground motions and PL behavior were noted both near the epicenter and at higher distances from the epicenter.Moreover,the ratio of the peak vertical acceleration to peak horizontal acceleration at certain stations was found to be close to 1.Finally,the non-linear time history analysis of the representative reinforced concrete frame structure for ground motions recorded at stations located equidistant from the epicenter,indicated that PL ground motions led to more significant damage compared to NPL ground motions.
基金the National Natural Science Foundation of China(Project Nos.41804046 and 41974050)the Special Fund of the Key Laboratory of Earthquake Prediction,China Earthquake Administration(No.CEAIEF2022010100).
文摘On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
基金Science and Technology Development Fund of Wuhan Institute of Earth Observation,China Earthquake Administration(No.302021-21)Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(WHYWZ202218).
文摘On February 6,2023,a devastating earthquake with a moment magnitude of M_(W)7.8 struck the town of Pazarcik in south-central Türkiye,followed by another powerful earthquake with a moment magnitude of M_(W)7.6 that struck the nearby city of Elbistan 9 h later.To study the characteristics of surface deformation caused by this event and the influence of fault rupture,this study calculated the static coseismic deformation of 56 stations and dynamic displacement waveforms of 15 stations using data from the Turkish national fixed global navigation satellite system(GNSS)network.A maximum static coseismic displacement of 0.38 m for the M_(W)7.8 Kahramanmaras earthquake was observed at station ANTE,36 km from the epicenter,and a maximum dynamic coseismic displacement of 4.4 m for the M_(W)7.6 Elbistan earthquake was observed at station EKZ1,5 km from the epicenter.The rupture-slip distributions of the two earthquakes were inverted using GNSS coseismic deformation as a constraint.The results showed that the Kahramanmaras earthquake rupture segment was distinct and exposed on the ground,resulting in significant rupture slip along the Amanos and Pazarcik fault segments of the East Anatolian Fault.The maximum slip in the Pazarcik fault segment was 10.7 m,and rupture occurred at depths of 0–15 km.In the Cardak fault region,the Elbistan earthquake caused significant ruptures at depths of 0–12 km,with the largest amount of slip reaching 11.6 m.The Coulomb stress change caused by the Kahramanmaras earthquake rupture along the Cardak fault segment was approximately 2 bars,and the area of increased Coulomb stress corresponded to the subsequent rupture region of the M_(W)7.6 earthquake.Thus,it is likely that the M_(W)7.8 earthquake triggered or promoted the M_(W)7.6 earthquake.Based on the cumulative stress impact of the M_(W)7.8 and M_(W)7.6 events,the southwestern segment of the East Anatolian Fault,specifically the Amanos fault segment,experienced a Coulomb rupture stress change exceeding 2 bars,warranting further attention to assess its future seismic hazard risk.
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
基金supportedby Basic Science Research Special Item of the Institute of Geology, China Earthquake Administration (NoDF-IGCEA-0608-2-10)Special Research Program of China Earthquake Administration (No. 200808079).
文摘We systematically analyze coseismic responses and post-seismic characteristics of groundwater levels in the Three Gorges well-network to the Ms8.0 Wenchuan earthquake on 12 May 2008. The results indicate that these characteristics differ among wells. On the conditions of similar borehole configurations, the differences are associated with geological structural sites of wells, burial types of aquifers monitored, and transmissivities of aquifer systems. We explored coseismic and post-seismic step-rise and step-drop mechanical mechanisms and their implication to earthquake prediction. We validated the inference that the residual step-rise zone is a possible earthquake risk zone based on recent seismic activity on the Xiannüshan fault in the area.
文摘In this paper, through the nonlinear response of rock strain and stress, we have analized the physical mechanism of loading and unloading response ratio of the well level to the earth tides,the respouse of an aquifer of confined well to bulk strain tide and showed two methods of the calculation of loading and unloading response ratio of the well level to the earth tides. We took the example of the Yu 01 well, which is near the epicenter of Heze M S 5.9 earthquake, calculated the response rate and loading and unloading response ratio of two kinds of the earth tides of it. The response rate and response ratio before the earthquake had the variation of increase.
文摘Based on the systematical collection and processing of data on the influence of mining-induced earthquakes on water table regime in deep well Lu-15 in Taozhuang Coal Mine since 1980, we study the characteristics of coseismic effect of water table in deep well in this paper. We have found precursory phenomena of water table in deep well before mining-induced earthquake. Here we discuss the physical mechanism of coseismic effect of mining--induced earthquake on water table in deep well.
基金National Natural Science Fund of China under Nos.52168072 and 51808467High-level Talents Support Plan of Yunnan Province of China(2020)。
文摘At present,there is not much research on mid-story isolated structures in mountainous areas.In this study,a model of a mid-story isolated structure considering soil-structure interaction(SSI)in mountainous areas is established along with a model that does not consider SSI.Eight long-period earthquake waves and two ordinary earthquake waves are selected as inputs for the dynamic time history analysis of the structure.The results show that the seismic response of a mid-story isolated structure considering SSI in mountainous areas can be amplified when compared with a structure that does not consider SSI.The structure response under long-period earthquakes is larger than that of ordinary earthquakes.The structure response under far-field harmonic-like earthquakes is larger than that of near-fault pulse-type earthquakes.The structure response under near-fault pulse-type earthquakes is larger than that of far-field non-harmonic earthquakes.When subjected to long-period earthquakes,the displacement of the isolated bearings exceeded the limit value,which led to instability and overturning of the structure.The structure with dampers in the isolated story could adequately control the nonlinear response of the structure,effectively reduce the displacement of the isolated bearings,and provide a convenient,efficient and economic method not only for new construction but also to retrofit existing structures.