期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Evaluation of Uncertainty of Earthquake Parameters for the Purpose of Seismic Zoning of Iran
1
作者 Mirzaei Noorbakhsh,Gao Mengtan,and Chen YuntaiInstitute of Geophysics,SSB,Beijing 100081,China Institute of Geophysics,Tehran University,Tehran 14394,Iran 《Earthquake Research in China》 1997年第2期78-93,共16页
An efficient procedure is used for explicit description and evaluation of uncertainty of earthquake parameters in the uniform catalog of earthquakes in Iran and neighboring regions.An inadequate number of local and re... An efficient procedure is used for explicit description and evaluation of uncertainty of earthquake parameters in the uniform catalog of earthquakes in Iran and neighboring regions.An inadequate number of local and regional seismographic stations,poor station distribution,and Inadequacy of velocity models have resulted in conspicuous uncertainty in different parameters of recorded events.In a comprehensive seismic hazard analysis such uncertainties should be considered.Uncertainty of magnitude and location of events are evaluated for three different time periods,namely,historical,early instrumental,and modern instrumental time periods,for which existing seismological information differ widely in quantity,quality,and type.It is concluded that an uncertainty of 0.2-0.3 units of magnitude and 10-15 km in epicenter determinations should be considered in the most favorable conditions.None of the hypocenters of earthquakes in Iran can be considered as reliable,unless supported by other information such as 展开更多
关键词 Evaluation of Uncertainty of earthquake Parameters for the Purpose of Seismic zoning of Iran ISC
下载PDF
In search of potential earthquake source regions in the Chinese mainland in the light of ambient shear stress field 被引量:4
2
作者 陈培善 白彤霞 肖磊 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第3期365-370,370-377,共14页
Earth media are incomplete media.There exist many cracks in it. The achievements of fracture mechanics showthat the strength of the incomplete materials will be much lower than that of the complete materials. We consi... Earth media are incomplete media.There exist many cracks in it. The achievements of fracture mechanics showthat the strength of the incomplete materials will be much lower than that of the complete materials. We consider that earthquake occurrence is the result of unstable propagation of a crack in crust media in proper conditionand the earthquake rupture is the phenomenon of a failure by fast fracture under applied low shear stress. It hasalready been explained by fracture mechanics.The occurrence of failure by fast fracture is necessarily associated with the presence of high level concentration of local stress and strain. The elastic/plastic stress analysis in cracked pieces by Dugdale indicates that thestate of stress at the tip of a crack takes a very important role to crack propagation. A plastic zone has necessarilyformed in the tip of a crack due to stress concentration. Therefore, the dislocations st the tip of a crack are naturally a plastic displacement, rather than elastic one. The plastic displacement, where τ0 is appliedshear stress which is equivalent to initial or tectonic shear stress when the quake occurs, a is the half length of acrack, It is the rigidity,τy is the yield stresses in shear. The main seismic dislocations take place exactly at theends of the crack where the plastic zone had been formed. SO, a critical assumption is adopted, i. e. we assumethe dislocation D(1,,t) as formula (5) in text. The maximum earthquake dislocation, whereL is the fault length. If p is taken the value in the upper crust, μ=33 GPa; and τy is taken the average valuegiven from laboratories,τy= 30 MPa. Thus, according to observation values of Dmax and L, using the formula,one can estimate the initial shear stresses for large earthquakes. Computations show that the initial shear stressesfor large earthquakes all over the world are about 5-20 MPa which have some differences between regions.We further research the characteristics of source spectra and have derived the dependent relation of bodywave magnitude mb on the shear stress τ0 and seismic moment M, as formula (11)in text. Thus, the formulaprovides a POssibility of computation of large amount of tectonic shear stress values from seismic data. We consider that the tectonic shear stress field is a main factor which controls the earthquake occurrence. The regions withhigh tectonic shear stress values are considered to be prone to occur great earthquakes (Ms>6) and called earthquake hazard regions. Based on this criterion, τ0 values for all earthquakes with mb≥3. 8 all over China since1987 have been computed, and the great earthquake hazard regions with magnitude ranges have been zoned inthe Chinese mainland.During April 1992 -January 31, 1994, there were 9 Ms≥6 earthquakes which occurred in the Chinesemainland, 8 earthquakes of the 9 had fallen into the regions delineated by us prior to the earthquake occurrence,with only one failure. This new approach as a method for medium--term prediction of strong earthquakes hasbeen proved by practice to be an efficient one.It has good physical bases and bright prospect and worth furtherresearch. Received February 7,1994 1 Accepted February 10, 1995.Contribution No. 95A0061, Institute of Geophysics,SSB, China. 展开更多
关键词 seismic rupture potential earthquake zone seismic risk region tectonic shear stress ambientshear stress
下载PDF
Internal structures and high-velocity frictional properties of Longmenshan fault zone at Shenxigou activated during the 2008 Wenchuan earthquake 被引量:3
3
作者 Yu Wang Shengli Ma +7 位作者 Toshihiko Shimamoto Lu Yao Jianye Chen Xiaosong Yang Honglin He Jiaxiang Dang Linfeng Hou Tetsuhiro Togo 《Earthquake Science》 2014年第5期499-528,共30页
This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2... This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake. 展开更多
关键词 Wenchuan earthquake - Longmenshan faultsystem - Shenxigou fault zone Fault zone structures High-velocity friction
下载PDF
Pre-seismic gravity anomalies before Linkou Ms6.4 earthquake by continuous gravity observation of Crustal Movement Observation Network of China 被引量:2
4
作者 Xinsheng Wang Honglei Li Yufei Han 《Geodesy and Geodynamics》 2017年第2期120-124,共5页
A Ms6.4 earthquake occurred at Linkou country, Heilongjiang Province (44.8°N, 129.9°E) on January 2, 2016 at a depth of 580 km. Pre-seismic graviW anomalies obtained at a 1 Hz sampling rate from Crustal Mo... A Ms6.4 earthquake occurred at Linkou country, Heilongjiang Province (44.8°N, 129.9°E) on January 2, 2016 at a depth of 580 km. Pre-seismic graviW anomalies obtained at a 1 Hz sampling rate from Crustal Movement Observation Network of China (CMONOC) are analyzed after the earthquake. The results show that: (1) different from previous studies, both pre-seismic amplitude perturbation and co-seismic amplitude perturbation are not critical inversely proportional to epicentral distance; (2) unlike shallow earthquake, the pre-seismic and co-seismic amplitude perturbation of gravity illustrate syn- chronous spatial variation characters with decrease of epicentral distance for Linkou earthquake. This may because Linkou earthquake is a deep earthquake and occurred in Pacific Plate subduction zone; (3) compared to basement and semi-basement, cave can provide a better observation environment for gPhone gravimeter to detect pre-seismic gravity anomalies. 展开更多
关键词 Linkou earthquake Pre-seismic gravity anomaly CMONOC Subduction zone Deep earthquake
下载PDF
Temporal variation of gravity field prior to the Ludian Ms6.5 and Kangding Ms6.3 earthquakes 被引量:3
5
作者 Hao Hongtao Wei Jin +2 位作者 Hu Minzhang Liu Ziwei Li Hui 《Geodesy and Geodynamics》 2015年第6期429-436,共8页
Using mobile gravity data from the central area of Sichuan and Yunnan Provinces, the relationship between gravity variation and earthquakes was studied based on the Ludian Ms6.5 earthquake that occurred on August 3rd,... Using mobile gravity data from the central area of Sichuan and Yunnan Provinces, the relationship between gravity variation and earthquakes was studied based on the Ludian Ms6.5 earthquake that occurred on August 3rd, 2014, and the Kangding Ms6.3 earthquake that occurred on November 22 nd, 2014; the mechanism of gravity variation was also explored. The results are as follows:(1) Prior to both earthquakes, gravity variation exhibited similar characteristics as those observed before both the Tangshan and Wenchuan earthquakes, in which typical precursor anomalies were positive gravity variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the earthquake.(2) A relatively accurate prediction of the occurrence locations of the two earthquakes was made by the Gravity Network Center of China(GNCC) based on these precursor anomalies. In the gravity study report on the 2014 earthquake trends submitted at the end of 2013, the Daofu-Shimian section at the junction of the Xianshuihe and Longmenshan fault zones was noted as an earthquake-risk region with a predicted magnitude of 6.5, which covered the epicenter of the Kangding Ms6.3 earthquake. In another report on earthquake trends in southwestern China submitted in mid-2014, the Lianfeng, Zhaotong fault zone was also classified as an earthquake-risk region with a magnitude of 6.0, and the central area of this region basically overlapped with the epicenter of the Ludian Ms6.5 earthquake.(3) The gravity variation characteristics are reasonably consistent with crustal movements, and deep material migration is likely the primary cause of gravity variation. 展开更多
关键词 Ludian Ms6.5 earthquake Kangding Ms6.3 earthquak Gravity variation Gradient zone Mechanism of gravity variation Crustal movement Deep material migration Sichuan-Yunnan area
下载PDF
Tectonic Stress Analysis of Future Large Earthquake Zones along the Bayan Har Block Boundary,Tibet Plateau
6
作者 ZHOU Chunjing ZHAO Wenjin +1 位作者 WANG Lianjie WU Zhonghai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期683-684,共2页
The Bayan Har block is mainly bounded by the east Kunlun fault zone to the north, Garze-Yushu -Xianshuihe fault zone to the south and Longmenshan fault zone to the east (Fig. 1). In the past 20 years, large earthqua... The Bayan Har block is mainly bounded by the east Kunlun fault zone to the north, Garze-Yushu -Xianshuihe fault zone to the south and Longmenshan fault zone to the east (Fig. 1). In the past 20 years, large earthquakes have occurred frequently along this block's boundaries, which has received much attention among geoscientists. Whether large earthquakes will happen (and where) along this block's boundary faults in the future are two key problems that need to be addressed. This study calculates the accumulated tectonic stress and superposition of the coulomb stress caused by fault slip of 16 large earthquakes since 1904, and evaluates the possible locations of future earthquakes that may occur around this block. 展开更多
关键词 Tectonic Stress Analysis of Future Large earthquake Zones along the Bayan Har Block Boundary Tibet Plateau
下载PDF
The relationships between earthquakes and positions of the sun and moon(Ⅱ)——Sometemporalcharacteristicsoftheaftershocksequencesofstrongearthquakes
7
作者 高伟 刘蒲雄 +2 位作者 许绍燮 彭克银 吕晓健 《Acta Seismologica Sinica(English Edition)》 CSCD 1996年第3期69-78,共10页
This paper deals with the distributive characteristics of the occurrence time of earthquakes with respect to the aftershock sequences of strong earthquakes. The distribution of lunar and solar local hour angles at the... This paper deals with the distributive characteristics of the occurrence time of earthquakes with respect to the aftershock sequences of strong earthquakes. The distribution of lunar and solar local hour angles at the time of commencement of moderate and strong aftershocks indicates that the time of commencement of moderate and strong aftershocks is modulated by the positions of the sun and moon and then the earthquake restrained time zones exists also. In this paper the differences of earthquake restrained time zones between the preshock sequences and the aftershock sequences are compared, and the possible mechanism is analyzed preliminarily. And the possible maximum scope of accuracy in predicting the occurrence time of an earthquake is determined as well. 展开更多
关键词 moderate and strong aftershock occurrence time of earthquake local hour angle earthquake restrained time zone time prediction.
下载PDF
Goce derived geoid changes before the Pisagua 2014 earthquake
8
作者 Orlando Alvarez Mario Gimenez +2 位作者 Andrés Folguera Sofia Guillen Claudia Tocho 《Geodesy and Geodynamics》 2018年第1期50-56,共7页
The analysis of space-time surface deformation during earthquakes reveals the variable state of stress that occurs at deep crustal levels, and this information can be used to better understand the seismic cycle. Under... The analysis of space-time surface deformation during earthquakes reveals the variable state of stress that occurs at deep crustal levels, and this information can be used to better understand the seismic cycle. Understanding the possible mechanisms that produce earthquake precursors is a key issue for earthquake prediction. In the last years, modern geodesy can map the degree of seismic coupling during the interseismic period, as well as the coseismic and postseismic slip for great earthquakes along subduction zones. Earthquakes usually occur due to mass transfer and consequent gravity variations, where these changes have been monitored for intraplate earthquakes by means of terrestrial gravity measurements. When stresses and correspondent rupture areas are large, affecting hundreds of thousands of square kilometres(as occurs in some segments along plate interface zones), satellite gravimetry data become relevant. This is due to the higher spatial resolution of this type of data when compared to terrestrial data, and also due to their homogeneous precision and availability across the whole Earth.Satellite gravity missions as GOCE can map the Earth gravity field with unprecedented precision and resolution. We mapped geoid changes from two GOCE satellite models obtained by the direct approach,which combines data from other gravity missions as GRACE and LAGEOS regarding their best characteristics. The results show that the geoid height diminished from a year to five months before the main seismic event in the region where maximum slip occurred after the Pisagua Mw = 8.2 great megathrust earthquake. This diminution is interpreted as accelerated inland-directed interseismic mass transfer before the earthquake, coinciding with the intermediate degree of seismic coupling reported in the region. We highlight the advantage of satellite data for modelling surficial deformation related to preseismic displacements. This deformation, combined to geodetical and seismological data, could be useful for delimiting and monitoring areas of higher seismic hazard potential. 展开更多
关键词 Satellite gravimetry Pre-seismic geoid changes Great megathrust earthquakes Subduction zones Forecasting and monitoring
下载PDF
Recent advances in imaging crustal fault zones: a review 被引量:9
9
作者 Hongfeng Yang 《Earthquake Science》 CSCD 2015年第2期151-162,共12页
Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influenc... Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influence rupture propagation, and hold important information of earthquake physics. A number of geophysical and geodetic methods have been developed to derive high-resolution structure of the LVZ. Here, I review a few recent approaches, including ambient noise cross-correlation on dense across-fault arrays and GPS recordings of fault-zone trapped waves. Despite the past efforts, many questions concerning the LVZ structure remain unclear, such as the depth extent of the LVZ. High-quality data from larger and denser arrays and new seismic imaging technique using larger portion of recorded waveforms, which are currently under active development, may be able to better resolve the LVZ structure. In addition, effects of the alongstrike segmentation and gradational velocity changes across the boundaries between the LVZ and the host rock on rupture propagation should be investigated by conducting comprehensive numerical experiments. Furthermore, high-quality active sources such as recently developed large-volume airgun arrays provide a powerful tool to continuously monitor temporal changes of fault-zone properties, and thus can advance our understanding of fault zone evolution. 展开更多
关键词 Fault zone structure Fault zone waves earthquake rupture Temporal changes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部