In this study the seismic pounding response of adjacent multi-degree-of-freedom(MDOF) buildings with bilinear inter-story resistance characteristics is investigated through dimensional analysis. The application of dim...In this study the seismic pounding response of adjacent multi-degree-of-freedom(MDOF) buildings with bilinear inter-story resistance characteristics is investigated through dimensional analysis. The application of dimensional analysis leads to a condensed presentation of the response, and the remarkable self-similarity property for bilinear MDOF buildings with inelastic collision is uncovered. It is shown that when the response is expressed in the appropriate dimensionless form, response spectra for any intensity of the excitation collapse to a single master curve. The reduced Π set explicitly describes the interaction between the colliding structures. The effect of pounding on the MDOF building’s response is illustrated using three well-divided spectral regions(amplifi ed, de-amplifi ed and unaffected regions). Parametric studies are conducted to investigate the effects of the story stiffness of structures, the story stiffness ratio and mass ratio of adjacent buildings, the structural inelastic characteristics and the gap size values. Results show that(i) the infl uence of system stiffness ratio to the lighter and more fl exible building is more signifi cant in the fi rst spectral region, where the maximum response of the building is amplifi ed because of pounding; and(ii) the velocity and pounding force of the heavier and stiffer building is unexpectedly sensitive to the mass ratio of adjacent buildings.展开更多
Structural pounding under earthquake has been recently extensively investigated using various impact analytical models.In this paper,a brief review on the commonly used impact analytical models is conducted.Based on t...Structural pounding under earthquake has been recently extensively investigated using various impact analytical models.In this paper,a brief review on the commonly used impact analytical models is conducted.Based on this review,the formula used to determine the damping constant related to the impact spring stiffness,coefficient of restitution,and relative approaching velocity in the Hertz model with nonlinear damping is found to be incorrect.To correct this error,a more accurate approximating formula for the damping constant is theoretically derived 5~nd numerically verified.At the same time,a modified Kelvin impact model,which can reasonably account for the physical nature of pounding and conveniently implemented in the earthquake-induced pounding simulation of structural engineering is proposed.展开更多
Base isolation can effectively reduce the seismic forces on a superstructure, particularly in lowto medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level bet...Base isolation can effectively reduce the seismic forces on a superstructure, particularly in lowto medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level between the baseisolated building (BIB) and its surrounding retaining walls. To effectively investigate the behavior of the BIB pounding with adjacent structures, after assessing some commonly used impact models, a modified Kelvin impact model is proposed in this paper. Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case. At the same time, inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures. The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models. However, the difference between the numerical results from the various impact analytical models is not significant. Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drifts and floor accelerations during pounding. It is shown that pounding can substantially increase floor accelerations, especially at the ground floor where impacts occur. Higher modes of vibration are excited during poundings, increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure. Furthermore, higher ductility demands can be imposed on lower floors of the superstructure. Moreover, impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure. Finally, the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding under a limited seismic gap.展开更多
This paper presents an experimental study to investigate the performance of shape memory alloy(SMA) restrainers for mitigating the pounding and unseating of highway bridges when subjected to seismic excitations.Mechan...This paper presents an experimental study to investigate the performance of shape memory alloy(SMA) restrainers for mitigating the pounding and unseating of highway bridges when subjected to seismic excitations.Mechanical property tests of the SMA wire used in the restrainers are conducted first to understand the pseudo-elastic characteristics of the material.Then,a series of shaking table tests are carried out on a highway bridge model.The structural responses of the highway bridge model equipped with SMA restrainers,installed in the form of deck-deck and deck-pile connections,are analyzed and compared with the uncontrolled structures.The test results of this study indicate that the SMA restrainers are not only effective in preventing unseating but also in suppressing the seismic-induced pounding of the highway bridge model used in this study.展开更多
Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes.The consequences of pounding include d...Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes.The consequences of pounding include damage to piers,abutments,shear keys,bearings and restrainers,and possible collapse of deck spans.This paper investigates pounding in bridges from an analytical perspective.A simplified nonlinear model of a multiple-frame bridge is developed including the effects of inelastic frame action and nonlinear hinge behavior,to study the seismic response to longitudinal ground motion.Pounding is implemented using the contact force-based Kelvin model,as well as the momentum-based stereomechanical approach.Parameter studies are conducted to determine the effects of frame period ratio,column hysteretic behavior,energy dissipation during impact and near source ground motions on the pounding response of the bridge.The results indicate that pounding is most critical for highly out-of-phase frames and is not significant for frame period ratios greater than 0.7.Impact models without energy dissipation overestimate the displacement and acceleration amplifications due to impact,especially for elastic behavior of the frames.Representation of stiffness degradation in bridge columns is essential in capturing the accurate response of pounding frames subjected to far field ground motion.Finally,it is shown that strength degradation and pounding can result in significant damage to the stiffer frames of the bridge when subjected to large acceleration pulses from near field ground motion records.展开更多
Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase. Furthermore, buildings are usually constructed on soil; hence, there are interactions bet...Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase. Furthermore, buildings are usually constructed on soil; hence, there are interactions between the buildings and the underlying soil that should also be considered. This paper examines both the interaction between adjacent buildings due to pounding and the interaction between the buildings through the soil as they affect the buildings' seismic responses. The developed model consists of adjacent shear buildings resting on a discrete soil model and a linear visco- elastic contact force model that connects the buildings during pounding. The seismic responses of' adjacent buildings due to ground accelerations are obtained for two conditions: fixed-based (FB) and structure-soil-structure interaction (SSSI). The results indicate that pounding worsens the buildings' condition because their seismic responses are amplified after pounding. Moreover, the underlying soil negatively impacts the buildings' seismic responses during pounding because the ratio of their seismic response under SSSI conditions with pounding to those without pounding is greater than that of the FB condition.展开更多
The hazard assessment of potential earthquake-induced landslides is an important aspect of the study of earthquake-induced landslides. In this study, we assessed the hazard of potential earthquake-induced landslides i...The hazard assessment of potential earthquake-induced landslides is an important aspect of the study of earthquake-induced landslides. In this study, we assessed the hazard of potential earthquake-induced landslides in Huaxian County with a new hazard assessment method. This method is based on probabilistic seismic hazard analysis and the Newmark cumulative displacement assessment model. The model considers a comprehensive suite of information, including the seismic activities and engineering geological conditions in the study area, and simulates the uncertainty of the intensity parameters of the engineering geological rock groups using the Monte Carlo method. Unlike previous assessment studies on ground motions with a given exceedance probability level, the hazard of earthquake-induced landslides obtained by the method presented in this study allows for the possibility of earthquake-induced landslides in different parts of the study area in the future. The assessment of the hazard of earthquake-induced landslides in this study showed good agreement with the historical distribution of earthquake-induced landslides. This indicates that the assessment properly reflects the macroscopic rules for the development of earthquake-induced landslides in the study area, and can provide a reference framework for the management of the risk of earthquakeinduced landslides and land planning.展开更多
As the economy of China develops, an increasing number of key traffic projects have been undertaken in the west of China, where there are high, steep rock slopes. The collapse of dangerous rock masses, especially foll...As the economy of China develops, an increasing number of key traffic projects have been undertaken in the west of China, where there are high, steep rock slopes. The collapse of dangerous rock masses, especially following a strong earthquake, is one of common geological disasters known in rock slope engineering. Therefore, it is important to study the collapse mechanism of dangerous rock masses induced by an earthquake and the analysis approach of its stability. This study provides a simple and convenient method to determine the collapse mechanisms of two types of dangerous rock masses (i.e. cantilever and upright) associated with the definition and calculation of the safety factor, which is based on the flexure theory of a constant-section beam by combining with the maximum tensile-stress criterion to depict the process of crack propagation caused by seismic waves. The calculation results show that there are critical crack depths in each form of the dangerous rock masses. Once the accumulated depth of the crack growth during an earthquake exceeds the critical depth, the collapse will occur. It is also demonstrated that the crack extension amount of each step is not a constant value, and is closely associated with the current accumulated crack depth. The greater the cumulative crack depth, the more easily the crack propagates. Finally, the validity and applicability of the proposed method are verified through two actual engineering examples.展开更多
The seismic intensities, lithologic characteristics and terrain features from a 3000 km2-region near the epicenter of the Lushan earthquake are used to analyze earthquake-induced geological disaster. The preliminary r...The seismic intensities, lithologic characteristics and terrain features from a 3000 km2-region near the epicenter of the Lushan earthquake are used to analyze earthquake-induced geological disaster. The preliminary results indicate that secondary effects of the earthquake will affect specific areas, including those with glutenite and carbonate bedrock, a seismic intensity of IX, slopes between 40° and 50°, elevations of less than 2500 m, slope change rates between 20° and 30°, slope curvatures from - 1 to -0.5 and 0. 5 to 1, and relief between 50 and 100 m. Regions with susceptibility indices greater than 0.71 are prone to landslides and collapses. The secondary features are mainly distributed on both sides of the ridges that extend from Baosheng to Shuangshi and from Baosheng to Longxing. Other features are scattered on both sides of the ridges that extend from Qishuping to Baosheng and from Masangping to Lingguan. The distribution of the earthquake-related features trends in the NE direction, and the area that was most affected by the Lushan earthquake covers approximately 52.4 km^2.展开更多
The Lamuajue landslide is located in Lamuajue village on the tight bank of the Meigu River, Sichuan Province, China. This landslide is an ancient landslide with an extremely wide distribution area, covering an area of...The Lamuajue landslide is located in Lamuajue village on the tight bank of the Meigu River, Sichuan Province, China. This landslide is an ancient landslide with an extremely wide distribution area, covering an area of 19 km2 with a maximum width of 5-5 km and an estimated residual volume of 3 × 108 ma. The objectives of this study were to identify the characteristics and failure mechanism of this landslide. In this study, based on field investigations, aerial photography, and profile surveys, the boundary, lithology, structure of the strata, and characteristics of the landslide deposits were determined. A gently angled weak interlayer consisting of shale was the main factor contributing to the occurrence of the Lamuajue landslide. The deposition area can be divided into three zones: zone A is an avalanche deposition area mainly composed of blocks, fragments, and debris with diameters ranging from o.i m to 3 m; zone B is a residual integrated rock mass deposition area with large blocks, boulders and "fake bedrock"; and zone C is a deposition zone of limestone blocks and fragments. Three types of failure mechanism were analyzed and combined to explain the Lamuajue landslide based on the features of the accumulation area. First, a shattering-sliding mechanism caused by earthquakes in zone A. Second, a sliding mechanism along the weak intercalation caused by gravity and water in zone B. Third, a shattering-ejection mechanism generated by earthquakes in zone C. The results provide a distinctive case for the study of gigantic landslides induced by earthquakes, which is very important for understanding and assessing ancient earthquakeinduced landslides.展开更多
In order to prevent and mitigate disasters,it is crucial to immediately and properly assess the spatial distribution of landslide hazards in the earthquake-affected area.Currently,there are primarily two categories of...In order to prevent and mitigate disasters,it is crucial to immediately and properly assess the spatial distribution of landslide hazards in the earthquake-affected area.Currently,there are primarily two categories of assessment techniques:the physical mechanism-based method(PMBM),which considers the landslide dynamics and has the advantages of effectiveness and proactivity;the environmental factor-based method(EFBM),which integrates the environmental conditions and has high accuracy.In order to obtain the spatial distribution of landslide hazards in the affected area with near realtime and high accuracy,this study proposed to combine the PMBM based on Newmark method with EFBM to form Newmark-Information value model(N-IV),Newmark-Logic regression model(N-LR)and Newmark-Support Vector Machine model(N-SVM)for seismic landslide hazard assessment on the Ludian Mw 6.2 earthquake in Yunnan.The predicted spatial hazard distribution was compared with the actual cataloged landslide inventory,and frequency ratio(FR),and area under the curve(AUC)metrics were used to verify the model's plausibility,performance,and accuracy.According to the findings,the model's accuracy is ranked as follows:N-SVM>N-LR>N-IV>Newmark.With an AUC value of 0.937,the linked N-SVM was discovered to have the best performance.The research results indicate that the physics-environmental coupled model(PECM)exhibits accuracy gains of 46.406%(N-SVM),30.625%(N-LR),and 22.816%(N-IV)when compared to the conventional Newmark technique.It shows varied degrees of improvement from 2.577%to 12.446%when compared to the single EFBM.The study also uses the Ms 6.8 Luding earthquake to evaluate the model,showcasing its trustworthy in forecasting power and steady generalization.Since the suggested PECM in this study can adapt to complicated earthquake-induced landslides situations,it aims to serve as a reference for future research in a similar field,as well as to help with emergency planning and response in earthquakeprone regions with landslides.展开更多
Earthquake-induced gravity variation refers to changes in the earth’s gravity field associated with seismic activities.In recent years,development in the theories has greatly promoted seismic deformation research,lay...Earthquake-induced gravity variation refers to changes in the earth’s gravity field associated with seismic activities.In recent years,development in the theories has greatly promoted seismic deformation research,laying a solid theoretical foundation for the interpretation and application of seismological gravity monitoring.Traditional terrestrial gravity measurements continue to play a significant role in studies of interseismic,co-seismic,and post-seismic gravity field variations.For instance,superconducting gravimeter networks can detect co-seismic gravity change at the sub-micro Gal level.At the same time,the successful launch of satellite gravity missions(e.g.,the Gravity Recovery and Climate Experiment or GRACE)has also facilitated applied studies of the gravity variation associated with large earthquakes,and several remarkable breakthroughs have been achieved.The progress in gravity observation technologies(e.g.,GRACE and superconducting gravimetry)and advances in the theories have jointly promoted seismic deformation studies and raised many new research topics.For example,superconducting gravimetry has played an important role in analyses of episodic tremor,slow-slip events,and interseismic strain patterns;the monitoring of transient gravity signals and related theories have provided a new perspective on earthquake early warning systems;the mass transport detected by the GRACE satellites several months before an earthquake has brought new insights into earthquake prediction methods;the use of artificial intelligence to automatically identify tiny gravity change signals is a new approach to accurate and rapid determination of earthquake magnitude and location.Overall,many significant breakthroughs have been made in recent years,in terms of the theory,application,and observation measures.This article summarizes the progress,with the aim of providing a reference for seismologists and geodetic researchers studying the phenomenon of gravity variation,advances in related theories and applications,and future research directions in this discipline.展开更多
Seismic pounding phenomena, particularly the collision of neighboring buildings under long-period ground motion, are becoming a significant issue in Japan. We focused on a specific apartment structure called the Nuevo...Seismic pounding phenomena, particularly the collision of neighboring buildings under long-period ground motion, are becoming a significant issue in Japan. We focused on a specific apartment structure called the Nuevo Leon buildings in the Tlatelolco district of Mexico City, which consisted of three similar buildings built consecutively with narrow expansion joints between the buildings. Two out of the three buildings collapsed completely in the 1985 Mexican earthquake. Using a finite element code based on the adaptively shifted integration (ASI)-Gauss technique, a seismic pounding analysis is performed on a simulated model of the Nuevo Leon buildings to understand the impact and collapse behavior of structures built near each other. The numerical code used in the analysis provides a higher computational efficiency than the conventional code for this type of problem and enables us to address dynamic behavior with strong nonlinearities, including phenomena such as member fracture and elemental contact. Contact release and recontact algorithms are developed and implemented in the code to understand the complex behaviors of structural members during seismic pounding and the collapse sequence. According to the numerical results, the collision of the buildings may be a result of the difference of natural periods between the neighboring buildings. This difference was detected in similar buildings from the damages caused by previous earthquakes. By setting the natural period of the north building to be 25% longer than the other periods, the ground motion, which hada relatively long period of 2 s, first caused the collision between the north and the center buildings. This collision eventually led to the collapse of the centerbuilding, followed by the destruction of the north building.展开更多
The permanent displacement of seismic slopes can be regarded as an effective criterion for stability estimation. This paper studied the characteristics of permanent displacements induced by velocity pulse-like ground ...The permanent displacement of seismic slopes can be regarded as an effective criterion for stability estimation. This paper studied the characteristics of permanent displacements induced by velocity pulse-like ground motions and developed an empirical model to readily evaluate the stability of seismic slopes in a near-fault region. We identified 264 velocity pulse-like ground motions from the Next Generation Attenuation(NGA) database using the latest improved energy-based approach. All selected ground motions were rotated to the orientation of the strongest observed pulse for considering the directivity of the pulse effect, so that the most dangerous condition for slopes was considered. The results show the velocity pulse-like ground motions have a much more significant effect on permanent displacement of slopes than non-pulse-like ground motions. A regression model based on a function of peak ground velocity(PGV), peak ground acceleration(PGA) and critical acceleration(ac), was generated. A significant difference was found by comparing the presented model with classical models from literatures. This model can be used to evaluate the seismic slope stability considering the effects of nearfault pulse-like characteristics.展开更多
Based on Hertz contact theory, a method to determine the parameters of Kelvin impact model for seismic pounding analysis of bridges is proposed. The impact stiffness of Kelvin model is determined by the ratio of maxim...Based on Hertz contact theory, a method to determine the parameters of Kelvin impact model for seismic pounding analysis of bridges is proposed. The impact stiffness of Kelvin model is determined by the ratio of maximum impact force to maximum contact deformation, which is calculated based on Hertz contact theory with considering the vibration effect. The restitution coefficient which has great influence on the damping coefficient of Kelvin impact model is investigated by numerical analysis. Numerical results indicate that the impact stiffness of Kelvin impact model increases with the increment of the Hertz contact stiffness, approaching velocity or the length ratio of short to long girders. Vibration effect has remarkable influence on the impact stiffness and cannot be neglected. The restitution coefficient decreases when approaching velocity increases or the length ratio of short girder to long girder decreasing. The practical ranges of impact stiffness and restitution coefficient are obtained as 3 × 10^8--6 × 10^8 N/m and 0.6-3.95 respectively.展开更多
In the present study,actual three-dimensional structures are converted into a stick model of multi degree of-freedom(MDOF)systems for understanding the macro-behavior of structures.The study investigates the performan...In the present study,actual three-dimensional structures are converted into a stick model of multi degree of-freedom(MDOF)systems for understanding the macro-behavior of structures.The study investigates the performance of three closely spaced,adjacent G+10,fixed-base MDOF systems with the mass aligned at the same levels and subjected to accidental underground blast loading.The acceleration time history of underground blast loading is generated based on past empirical relationships.The blast charge weight varies from 10 to 75 t while keeping the charge distance constant(R=100 m).The entire formulation is solved with the MATLAB solver,using the state space form solution.Three cases are considered,based on changing the position of the three stick systems.The first case considered left building rigid,middle building moderate rigid,and right building flexible.The second assumed left building flexible,middle building rigid,and right building moderate rigid.The third examined the left building as moderate rigid,the middle building as flexible,and the right building rigid.An analysis of the results shows that the arrangement with low stiffness,high stiffness,and moderately stiff buildings placed to the left,middle,and right side,respectively,yields minimum structural response when compared to the other two combinations.展开更多
The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displ...The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response.In the analysis,pounding between adjacent deck segments was considered.The seismic response of a multi-span bridge subjected to the multi-support excitation,considering not only the traveling-wave effect and partial coherence effect,but also the seismic non-stationary characteristics of multi-support earthquake motion,was simulated using finite element method(FEM).Meanwhile,the seismic response of the bridge under uniform earthquake was also analyzed.Finally,comparative analysis was conducted and some calculation results were shown for pounding effect,under multi-dimensional and multi-support earthquake motion,when performing seismic response analysis of multi-span bridge.Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input,the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5 8 times;the absolute value of bottom moment and shear force of piers increase by about50%600%and 23.1%900%,respectively.A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.展开更多
The present paper addresses the comparative study of three adjacent single-degree-of freedom structures for elastic and inelastic system with and without pounding under seismic excitations. For the gap between three a...The present paper addresses the comparative study of three adjacent single-degree-of freedom structures for elastic and inelastic system with and without pounding under seismic excitations. For the gap between three adjacent structures, the simulation is done by using linear spring element without damping. The entire numerical simulation is done in time domain by considering the inputs of four real ground motions. The results of the study show that the response of elastic system is much different to that of response of inelastic system in the absence and presence of pounding, especially in lighter or more flexible structures. Elastic structures show much severe pounding response than inelastic structures. Modeling of colliding structures behaving inelastically is really needed in order to obtain the accurate structural pounding involved response under seismic excitation.展开更多
基金the National Natural Science Foundation of China under Grant Nos.51322801,51238012 and 91215301)the Program for International Science and Technology Cooperation Projects of China under Grant No.2012DFA70810+1 种基金the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-11-08the National Science and Technology Major Project under Grant 2013zx06002001-09
文摘In this study the seismic pounding response of adjacent multi-degree-of-freedom(MDOF) buildings with bilinear inter-story resistance characteristics is investigated through dimensional analysis. The application of dimensional analysis leads to a condensed presentation of the response, and the remarkable self-similarity property for bilinear MDOF buildings with inelastic collision is uncovered. It is shown that when the response is expressed in the appropriate dimensionless form, response spectra for any intensity of the excitation collapse to a single master curve. The reduced Π set explicitly describes the interaction between the colliding structures. The effect of pounding on the MDOF building’s response is illustrated using three well-divided spectral regions(amplifi ed, de-amplifi ed and unaffected regions). Parametric studies are conducted to investigate the effects of the story stiffness of structures, the story stiffness ratio and mass ratio of adjacent buildings, the structural inelastic characteristics and the gap size values. Results show that(i) the infl uence of system stiffness ratio to the lighter and more fl exible building is more signifi cant in the fi rst spectral region, where the maximum response of the building is amplifi ed because of pounding; and(ii) the velocity and pounding force of the heavier and stiffer building is unexpectedly sensitive to the mass ratio of adjacent buildings.
文摘Structural pounding under earthquake has been recently extensively investigated using various impact analytical models.In this paper,a brief review on the commonly used impact analytical models is conducted.Based on this review,the formula used to determine the damping constant related to the impact spring stiffness,coefficient of restitution,and relative approaching velocity in the Hertz model with nonlinear damping is found to be incorrect.To correct this error,a more accurate approximating formula for the damping constant is theoretically derived 5~nd numerically verified.At the same time,a modified Kelvin impact model,which can reasonably account for the physical nature of pounding and conveniently implemented in the earthquake-induced pounding simulation of structural engineering is proposed.
基金National Natural Science Foundation of China Under Grant No.50778077 and 50878093
文摘Base isolation can effectively reduce the seismic forces on a superstructure, particularly in lowto medium-rise buildings. However, under strong near-fault ground motions, pounding may occur at the isolation level between the baseisolated building (BIB) and its surrounding retaining walls. To effectively investigate the behavior of the BIB pounding with adjacent structures, after assessing some commonly used impact models, a modified Kelvin impact model is proposed in this paper. Relevant parameters in the modified Kelvin model are theoretically derived and numerically verified through a simple pounding case. At the same time, inelasticity of the isolated superstructure is introduced in order to accurately evaluate the potential damage to the superstructure caused by the pounding of the BIB with adjacent structures. The reliability of the modified Kelvin impact model is validated through numerical comparisons with other impact models. However, the difference between the numerical results from the various impact analytical models is not significant. Many numerical simulations of BIBs are conducted to investigate the influence of various design parameters and conditions on the peak inter-story drifts and floor accelerations during pounding. It is shown that pounding can substantially increase floor accelerations, especially at the ground floor where impacts occur. Higher modes of vibration are excited during poundings, increasing the inter-story drifts instead of keeping a nearly rigid-body motion of the superstructure. Furthermore, higher ductility demands can be imposed on lower floors of the superstructure. Moreover, impact stiffness seems to play a significant role in the acceleration response at the isolation level and the inter-story drifts of lower floors of the superstructure. Finally, the numerical results show that excessive flexibility of the isolation system used to minimize the floor accelerations may cause the BIB to be more susceptible to pounding under a limited seismic gap.
基金Earthquake Engineering and Engineering Vibration Laboratory Foundation,Institute of Engineering Mechanics, China Earthquake Administration Under Grant No.2009a1the National Natural Science Foundation of China under Grant No.50878071
文摘This paper presents an experimental study to investigate the performance of shape memory alloy(SMA) restrainers for mitigating the pounding and unseating of highway bridges when subjected to seismic excitations.Mechanical property tests of the SMA wire used in the restrainers are conducted first to understand the pseudo-elastic characteristics of the material.Then,a series of shaking table tests are carried out on a highway bridge model.The structural responses of the highway bridge model equipped with SMA restrainers,installed in the form of deck-deck and deck-pile connections,are analyzed and compared with the uncontrolled structures.The test results of this study indicate that the SMA restrainers are not only effective in preventing unseating but also in suppressing the seismic-induced pounding of the highway bridge model used in this study.
基金Earthquake Engineering Research Centers Program of the National Science Foundation Under Award Number EEC-9701785(Mid-America Earthquake Center)
文摘Seismic pounding between adjacent frames in multiple-frame bridges and girder ends in multi-span simply supported bridges has been commonly observed in several recent earthquakes.The consequences of pounding include damage to piers,abutments,shear keys,bearings and restrainers,and possible collapse of deck spans.This paper investigates pounding in bridges from an analytical perspective.A simplified nonlinear model of a multiple-frame bridge is developed including the effects of inelastic frame action and nonlinear hinge behavior,to study the seismic response to longitudinal ground motion.Pounding is implemented using the contact force-based Kelvin model,as well as the momentum-based stereomechanical approach.Parameter studies are conducted to determine the effects of frame period ratio,column hysteretic behavior,energy dissipation during impact and near source ground motions on the pounding response of the bridge.The results indicate that pounding is most critical for highly out-of-phase frames and is not significant for frame period ratios greater than 0.7.Impact models without energy dissipation overestimate the displacement and acceleration amplifications due to impact,especially for elastic behavior of the frames.Representation of stiffness degradation in bridge columns is essential in capturing the accurate response of pounding frames subjected to far field ground motion.Finally,it is shown that strength degradation and pounding can result in significant damage to the stiffer frames of the bridge when subjected to large acceleration pulses from near field ground motion records.
文摘Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase. Furthermore, buildings are usually constructed on soil; hence, there are interactions between the buildings and the underlying soil that should also be considered. This paper examines both the interaction between adjacent buildings due to pounding and the interaction between the buildings through the soil as they affect the buildings' seismic responses. The developed model consists of adjacent shear buildings resting on a discrete soil model and a linear visco- elastic contact force model that connects the buildings during pounding. The seismic responses of' adjacent buildings due to ground accelerations are obtained for two conditions: fixed-based (FB) and structure-soil-structure interaction (SSSI). The results indicate that pounding worsens the buildings' condition because their seismic responses are amplified after pounding. Moreover, the underlying soil negatively impacts the buildings' seismic responses during pounding because the ratio of their seismic response under SSSI conditions with pounding to those without pounding is greater than that of the FB condition.
基金funded by the National Natural Science Foundation of China(41572313)Geological Survey Project(12120114035501)the China National Special Fund for Earthquake Scientific Research(201408014)
文摘The hazard assessment of potential earthquake-induced landslides is an important aspect of the study of earthquake-induced landslides. In this study, we assessed the hazard of potential earthquake-induced landslides in Huaxian County with a new hazard assessment method. This method is based on probabilistic seismic hazard analysis and the Newmark cumulative displacement assessment model. The model considers a comprehensive suite of information, including the seismic activities and engineering geological conditions in the study area, and simulates the uncertainty of the intensity parameters of the engineering geological rock groups using the Monte Carlo method. Unlike previous assessment studies on ground motions with a given exceedance probability level, the hazard of earthquake-induced landslides obtained by the method presented in this study allows for the possibility of earthquake-induced landslides in different parts of the study area in the future. The assessment of the hazard of earthquake-induced landslides in this study showed good agreement with the historical distribution of earthquake-induced landslides. This indicates that the assessment properly reflects the macroscopic rules for the development of earthquake-induced landslides in the study area, and can provide a reference framework for the management of the risk of earthquakeinduced landslides and land planning.
基金Scientific Research Fund of the Hebei Education Department under Grant No.QN2015166
文摘As the economy of China develops, an increasing number of key traffic projects have been undertaken in the west of China, where there are high, steep rock slopes. The collapse of dangerous rock masses, especially following a strong earthquake, is one of common geological disasters known in rock slope engineering. Therefore, it is important to study the collapse mechanism of dangerous rock masses induced by an earthquake and the analysis approach of its stability. This study provides a simple and convenient method to determine the collapse mechanisms of two types of dangerous rock masses (i.e. cantilever and upright) associated with the definition and calculation of the safety factor, which is based on the flexure theory of a constant-section beam by combining with the maximum tensile-stress criterion to depict the process of crack propagation caused by seismic waves. The calculation results show that there are critical crack depths in each form of the dangerous rock masses. Once the accumulated depth of the crack growth during an earthquake exceeds the critical depth, the collapse will occur. It is also demonstrated that the crack extension amount of each step is not a constant value, and is closely associated with the current accumulated crack depth. The greater the cumulative crack depth, the more easily the crack propagates. Finally, the validity and applicability of the proposed method are verified through two actual engineering examples.
基金supported by the Director Foundation of the Institute of Seismology,China Earthquake Administration(201056076,201116002)
文摘The seismic intensities, lithologic characteristics and terrain features from a 3000 km2-region near the epicenter of the Lushan earthquake are used to analyze earthquake-induced geological disaster. The preliminary results indicate that secondary effects of the earthquake will affect specific areas, including those with glutenite and carbonate bedrock, a seismic intensity of IX, slopes between 40° and 50°, elevations of less than 2500 m, slope change rates between 20° and 30°, slope curvatures from - 1 to -0.5 and 0. 5 to 1, and relief between 50 and 100 m. Regions with susceptibility indices greater than 0.71 are prone to landslides and collapses. The secondary features are mainly distributed on both sides of the ridges that extend from Baosheng to Shuangshi and from Baosheng to Longxing. Other features are scattered on both sides of the ridges that extend from Qishuping to Baosheng and from Masangping to Lingguan. The distribution of the earthquake-related features trends in the NE direction, and the area that was most affected by the Lushan earthquake covers approximately 52.4 km^2.
基金financially supported by the Open Research Fund from the Key Laboratory of Mountain Hazards and Earth Surface Process (Chinese Academy of Sciences) (Grant No.KLMHESP-17-06)the Independent Research Fund from the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grant No.40100-00002219)
文摘The Lamuajue landslide is located in Lamuajue village on the tight bank of the Meigu River, Sichuan Province, China. This landslide is an ancient landslide with an extremely wide distribution area, covering an area of 19 km2 with a maximum width of 5-5 km and an estimated residual volume of 3 × 108 ma. The objectives of this study were to identify the characteristics and failure mechanism of this landslide. In this study, based on field investigations, aerial photography, and profile surveys, the boundary, lithology, structure of the strata, and characteristics of the landslide deposits were determined. A gently angled weak interlayer consisting of shale was the main factor contributing to the occurrence of the Lamuajue landslide. The deposition area can be divided into three zones: zone A is an avalanche deposition area mainly composed of blocks, fragments, and debris with diameters ranging from o.i m to 3 m; zone B is a residual integrated rock mass deposition area with large blocks, boulders and "fake bedrock"; and zone C is a deposition zone of limestone blocks and fragments. Three types of failure mechanism were analyzed and combined to explain the Lamuajue landslide based on the features of the accumulation area. First, a shattering-sliding mechanism caused by earthquakes in zone A. Second, a sliding mechanism along the weak intercalation caused by gravity and water in zone B. Third, a shattering-ejection mechanism generated by earthquakes in zone C. The results provide a distinctive case for the study of gigantic landslides induced by earthquakes, which is very important for understanding and assessing ancient earthquakeinduced landslides.
基金financially supported by the National Natural Science Foundation of China(41977213)The Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0906)+3 种基金Fundamental Research Funds for the Central Universities(XJ2021KJZK039)Sichuan Provincial Transportation Science and Technology Project(2021-A-03)China Road&Bridge Corporation(P220447)Research on the mechanism of dynamic disaster and key technology of protection for slope engineering in the high-intensity red layer area of Heilongtan(R110121H01092)。
文摘In order to prevent and mitigate disasters,it is crucial to immediately and properly assess the spatial distribution of landslide hazards in the earthquake-affected area.Currently,there are primarily two categories of assessment techniques:the physical mechanism-based method(PMBM),which considers the landslide dynamics and has the advantages of effectiveness and proactivity;the environmental factor-based method(EFBM),which integrates the environmental conditions and has high accuracy.In order to obtain the spatial distribution of landslide hazards in the affected area with near realtime and high accuracy,this study proposed to combine the PMBM based on Newmark method with EFBM to form Newmark-Information value model(N-IV),Newmark-Logic regression model(N-LR)and Newmark-Support Vector Machine model(N-SVM)for seismic landslide hazard assessment on the Ludian Mw 6.2 earthquake in Yunnan.The predicted spatial hazard distribution was compared with the actual cataloged landslide inventory,and frequency ratio(FR),and area under the curve(AUC)metrics were used to verify the model's plausibility,performance,and accuracy.According to the findings,the model's accuracy is ranked as follows:N-SVM>N-LR>N-IV>Newmark.With an AUC value of 0.937,the linked N-SVM was discovered to have the best performance.The research results indicate that the physics-environmental coupled model(PECM)exhibits accuracy gains of 46.406%(N-SVM),30.625%(N-LR),and 22.816%(N-IV)when compared to the conventional Newmark technique.It shows varied degrees of improvement from 2.577%to 12.446%when compared to the single EFBM.The study also uses the Ms 6.8 Luding earthquake to evaluate the model,showcasing its trustworthy in forecasting power and steady generalization.Since the suggested PECM in this study can adapt to complicated earthquake-induced landslides situations,it aims to serve as a reference for future research in a similar field,as well as to help with emergency planning and response in earthquakeprone regions with landslides.
文摘Earthquake-induced gravity variation refers to changes in the earth’s gravity field associated with seismic activities.In recent years,development in the theories has greatly promoted seismic deformation research,laying a solid theoretical foundation for the interpretation and application of seismological gravity monitoring.Traditional terrestrial gravity measurements continue to play a significant role in studies of interseismic,co-seismic,and post-seismic gravity field variations.For instance,superconducting gravimeter networks can detect co-seismic gravity change at the sub-micro Gal level.At the same time,the successful launch of satellite gravity missions(e.g.,the Gravity Recovery and Climate Experiment or GRACE)has also facilitated applied studies of the gravity variation associated with large earthquakes,and several remarkable breakthroughs have been achieved.The progress in gravity observation technologies(e.g.,GRACE and superconducting gravimetry)and advances in the theories have jointly promoted seismic deformation studies and raised many new research topics.For example,superconducting gravimetry has played an important role in analyses of episodic tremor,slow-slip events,and interseismic strain patterns;the monitoring of transient gravity signals and related theories have provided a new perspective on earthquake early warning systems;the mass transport detected by the GRACE satellites several months before an earthquake has brought new insights into earthquake prediction methods;the use of artificial intelligence to automatically identify tiny gravity change signals is a new approach to accurate and rapid determination of earthquake magnitude and location.Overall,many significant breakthroughs have been made in recent years,in terms of the theory,application,and observation measures.This article summarizes the progress,with the aim of providing a reference for seismologists and geodetic researchers studying the phenomenon of gravity variation,advances in related theories and applications,and future research directions in this discipline.
文摘Seismic pounding phenomena, particularly the collision of neighboring buildings under long-period ground motion, are becoming a significant issue in Japan. We focused on a specific apartment structure called the Nuevo Leon buildings in the Tlatelolco district of Mexico City, which consisted of three similar buildings built consecutively with narrow expansion joints between the buildings. Two out of the three buildings collapsed completely in the 1985 Mexican earthquake. Using a finite element code based on the adaptively shifted integration (ASI)-Gauss technique, a seismic pounding analysis is performed on a simulated model of the Nuevo Leon buildings to understand the impact and collapse behavior of structures built near each other. The numerical code used in the analysis provides a higher computational efficiency than the conventional code for this type of problem and enables us to address dynamic behavior with strong nonlinearities, including phenomena such as member fracture and elemental contact. Contact release and recontact algorithms are developed and implemented in the code to understand the complex behaviors of structural members during seismic pounding and the collapse sequence. According to the numerical results, the collision of the buildings may be a result of the difference of natural periods between the neighboring buildings. This difference was detected in similar buildings from the damages caused by previous earthquakes. By setting the natural period of the north building to be 25% longer than the other periods, the ground motion, which hada relatively long period of 2 s, first caused the collision between the north and the center buildings. This collision eventually led to the collapse of the centerbuilding, followed by the destruction of the north building.
基金financial support from the National Natural Science Foundation of China (41672286, 41761144080 and 41530639)Science &Technology Department of Sichuan Province (2017JQ0042)+2 种基金Ministry of Science and Technology of China (KY201801005)State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining & Technology (SKLGDUEK1806)Innovation-Driven Project of Central South University (No. 2019CX011)
文摘The permanent displacement of seismic slopes can be regarded as an effective criterion for stability estimation. This paper studied the characteristics of permanent displacements induced by velocity pulse-like ground motions and developed an empirical model to readily evaluate the stability of seismic slopes in a near-fault region. We identified 264 velocity pulse-like ground motions from the Next Generation Attenuation(NGA) database using the latest improved energy-based approach. All selected ground motions were rotated to the orientation of the strongest observed pulse for considering the directivity of the pulse effect, so that the most dangerous condition for slopes was considered. The results show the velocity pulse-like ground motions have a much more significant effect on permanent displacement of slopes than non-pulse-like ground motions. A regression model based on a function of peak ground velocity(PGV), peak ground acceleration(PGA) and critical acceleration(ac), was generated. A significant difference was found by comparing the presented model with classical models from literatures. This model can be used to evaluate the seismic slope stability considering the effects of nearfault pulse-like characteristics.
基金Supported by National Natural Science Foundation of China (No. 50578109)Tianjin Municipal Natural Science Foundation of China(No. 05YFGMGC10900)
文摘Based on Hertz contact theory, a method to determine the parameters of Kelvin impact model for seismic pounding analysis of bridges is proposed. The impact stiffness of Kelvin model is determined by the ratio of maximum impact force to maximum contact deformation, which is calculated based on Hertz contact theory with considering the vibration effect. The restitution coefficient which has great influence on the damping coefficient of Kelvin impact model is investigated by numerical analysis. Numerical results indicate that the impact stiffness of Kelvin impact model increases with the increment of the Hertz contact stiffness, approaching velocity or the length ratio of short to long girders. Vibration effect has remarkable influence on the impact stiffness and cannot be neglected. The restitution coefficient decreases when approaching velocity increases or the length ratio of short girder to long girder decreasing. The practical ranges of impact stiffness and restitution coefficient are obtained as 3 × 10^8--6 × 10^8 N/m and 0.6-3.95 respectively.
文摘In the present study,actual three-dimensional structures are converted into a stick model of multi degree of-freedom(MDOF)systems for understanding the macro-behavior of structures.The study investigates the performance of three closely spaced,adjacent G+10,fixed-base MDOF systems with the mass aligned at the same levels and subjected to accidental underground blast loading.The acceleration time history of underground blast loading is generated based on past empirical relationships.The blast charge weight varies from 10 to 75 t while keeping the charge distance constant(R=100 m).The entire formulation is solved with the MATLAB solver,using the state space form solution.Three cases are considered,based on changing the position of the three stick systems.The first case considered left building rigid,middle building moderate rigid,and right building flexible.The second assumed left building flexible,middle building rigid,and right building moderate rigid.The third examined the left building as moderate rigid,the middle building as flexible,and the right building rigid.An analysis of the results shows that the arrangement with low stiffness,high stiffness,and moderately stiff buildings placed to the left,middle,and right side,respectively,yields minimum structural response when compared to the other two combinations.
基金Project(51078242)supported by the National Natural Science Foundation of China
文摘The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed.A novel bottom rigid element(BRE)method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response.In the analysis,pounding between adjacent deck segments was considered.The seismic response of a multi-span bridge subjected to the multi-support excitation,considering not only the traveling-wave effect and partial coherence effect,but also the seismic non-stationary characteristics of multi-support earthquake motion,was simulated using finite element method(FEM).Meanwhile,the seismic response of the bridge under uniform earthquake was also analyzed.Finally,comparative analysis was conducted and some calculation results were shown for pounding effect,under multi-dimensional and multi-support earthquake motion,when performing seismic response analysis of multi-span bridge.Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input,the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5 8 times;the absolute value of bottom moment and shear force of piers increase by about50%600%and 23.1%900%,respectively.A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.
文摘The present paper addresses the comparative study of three adjacent single-degree-of freedom structures for elastic and inelastic system with and without pounding under seismic excitations. For the gap between three adjacent structures, the simulation is done by using linear spring element without damping. The entire numerical simulation is done in time domain by considering the inputs of four real ground motions. The results of the study show that the response of elastic system is much different to that of response of inelastic system in the absence and presence of pounding, especially in lighter or more flexible structures. Elastic structures show much severe pounding response than inelastic structures. Modeling of colliding structures behaving inelastically is really needed in order to obtain the accurate structural pounding involved response under seismic excitation.