Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically...Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.展开更多
Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. ...Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.展开更多
The alternative types of composite structure made of wood and cement based building materials needs to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of ea...The alternative types of composite structure made of wood and cement based building materials needs to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of earthquake resisting performance of shear wall, it is necessary to investigate not only elastic behavior of shear walls but also non-linear one. In this study, series of full-scale experiments on timber frame shear walls composed of Akasia wood (Acacia mangium) sheathed by Fiber Cement Board (FCB) were carried out. For predicting skeleton curve, a series of theoretical equations was derived, which cannot only solve arbitrary nail pattern shear wall but also nonlinear behavior after yielding. Further, for describing hysteresis loops of shear walls, so-called Normalized Cyclic Loop (NCL) model was adopted. By combining two theoretical approaches, weintended to predict whole cyclic shear wall behaviors tested. Good agreements were obtained from comparison between experiment and prediction. The information obtain by this study will be useful for practical engineers or structural designers to design the high performance earthquake resisting timber houses.展开更多
The shear wall with and without openings that served as a structural element or/and partition wall was utilized in a low-cost housing for the low-income people in Indonesia. The houses,however,should be withstoodfrom ...The shear wall with and without openings that served as a structural element or/and partition wall was utilized in a low-cost housing for the low-income people in Indonesia. The houses,however,should be withstoodfrom earthquake inertial force, so there must be no casualties when disaster struck. The alternative types of composite structure made of wood and cement based building materials needed to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of earthquake resisting performance of shear wall, we needs to investigate behavior of shear wallsnot only for cyclic static but alsofor dynamic loading. In this study, theseries of full-scale experiment on timber frame shear walls with and without openings,compose of Laminated Veneer Lumber (LVL) engineered wood (Paraserianthes Falcatariaand Hevea Brasiliensis) and sheathed by Fiber Cement Board (FCB), was carried out.By analyzing testing result using theoretical approaches, we intended to predict static initial stiffness and yielding strength as well as basic dynamic properties shear walls. For static behavior, good agreements were obtain from comparison between experiment and theoretical prediction based on mechanical model. While, for dynamic behavior, agreement was not sufficient due tothe effect of bending and rocking of actual test specimens. The information obtain by this study will be useful for practical engineers or structural designers to design the high performance earthquake resisting timber houses with a low construction cost.展开更多
The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study inv...The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.展开更多
In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple st...In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS).展开更多
In this article,we are exploring the hemodynamics of nanofluid,flowing through a bifurcated artery with atherosclerosis in the presence of a catheter.For treating obstruction in the artery,one can use the catheter who...In this article,we are exploring the hemodynamics of nanofluid,flowing through a bifurcated artery with atherosclerosis in the presence of a catheter.For treating obstruction in the artery,one can use the catheter whose outer surface is carrying the drug coated with nano-particles.The resultant solvent is considered as blood nano-fluid.Blood being a complex fluid,is modeled by couple stress fluid.In the presence of nano-particles,the temperature and the concentration distribution are understood in a bifurcated stenotic artery.The concluded mathematical model is governed by coupled non-linear equations,and are solved by using the homotopy perturbation method.Consequently,we have explored is the effects of fluid and the embedded geometric parameters on the hemodynamics characteristics.It is also realized that high wall shear stress exists for couple stress nano-fluid when compared to Newtonian nano-fluid.which is computed at a location corresponding to maximum constriction(z=12.5)of the artery.展开更多
Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factor...Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factors such as transverse shear deformation, torsional shear deformation and their Coupling, coupling of flexure and torsion, and second shear stress are considered. According to the generalized variational theory of Hellinger-Reissner, the element stiffness matrix is derived. Examples show that the developed model is accurate and can be applied in the finite element analysis of thinwalled structures.展开更多
The flow of incompressible couple stress fluid in a circular tube with stenosis and dilatations has been investigated. The stenosis was assumed to be axially symmetric and mild. The flow equations have been linearized...The flow of incompressible couple stress fluid in a circular tube with stenosis and dilatations has been investigated. The stenosis was assumed to be axially symmetric and mild. The flow equations have been linearized and the expressions for the resistance to the flow, velocity, pressure drop, wall shear stress have been derived. The effects of various parameters on these flow variables have been investigated. It is found that the resistance to the flow and pressure drop increase with height of the stenosis and decrease with post stenotic dilatation. Pressure drop decreases with couple stress fluid parameter for both stenosis and post stenotic dilatation. Further, the wall shear stress increases with height of the stenosis and couple stress parameter but decreases with post stenotic dilatation and couple stress fluid parameter.展开更多
文摘Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered.
文摘Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.
文摘The alternative types of composite structure made of wood and cement based building materials needs to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of earthquake resisting performance of shear wall, it is necessary to investigate not only elastic behavior of shear walls but also non-linear one. In this study, series of full-scale experiments on timber frame shear walls composed of Akasia wood (Acacia mangium) sheathed by Fiber Cement Board (FCB) were carried out. For predicting skeleton curve, a series of theoretical equations was derived, which cannot only solve arbitrary nail pattern shear wall but also nonlinear behavior after yielding. Further, for describing hysteresis loops of shear walls, so-called Normalized Cyclic Loop (NCL) model was adopted. By combining two theoretical approaches, weintended to predict whole cyclic shear wall behaviors tested. Good agreements were obtained from comparison between experiment and prediction. The information obtain by this study will be useful for practical engineers or structural designers to design the high performance earthquake resisting timber houses.
文摘The shear wall with and without openings that served as a structural element or/and partition wall was utilized in a low-cost housing for the low-income people in Indonesia. The houses,however,should be withstoodfrom earthquake inertial force, so there must be no casualties when disaster struck. The alternative types of composite structure made of wood and cement based building materials needed to meet with the high demand for earthquake-resistant houses in Indonesia. In order to understand the mechanism of earthquake resisting performance of shear wall, we needs to investigate behavior of shear wallsnot only for cyclic static but alsofor dynamic loading. In this study, theseries of full-scale experiment on timber frame shear walls with and without openings,compose of Laminated Veneer Lumber (LVL) engineered wood (Paraserianthes Falcatariaand Hevea Brasiliensis) and sheathed by Fiber Cement Board (FCB), was carried out.By analyzing testing result using theoretical approaches, we intended to predict static initial stiffness and yielding strength as well as basic dynamic properties shear walls. For static behavior, good agreements were obtain from comparison between experiment and theoretical prediction based on mechanical model. While, for dynamic behavior, agreement was not sufficient due tothe effect of bending and rocking of actual test specimens. The information obtain by this study will be useful for practical engineers or structural designers to design the high performance earthquake resisting timber houses with a low construction cost.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0701703)the Fundamental Research Funds for the Central Universities+1 种基金Project Supported by the Research and Innovation Program for Graduate Students in Jiangsu(Grant No.KYLX16_0257)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.CE02-2-47)
文摘The seismic performance of precast reinforced concrete (RC) coupled shear walls is significantly influenced by coupling beams and the beam-to-wall joints during large deformations into plastic ranges. This study investigated the use of engineered cementitious composite (ECC) in the cast-in-place beam-to-wall joints and the upper regions of the composite coupling beams as an innovative method to improve the seismic performance ofprecast RQ coupled shear walls. Two 1/2-scale precast coupled shear walls were tested under reversed cyclic loading and seismic behavior in terms of failure characteristic, mechanical characteristic value, load-displacement hysteresis curves, load-displacement envelope relationship, stiffness degradation, ductility and energy dissipation capacity were evaluated. Research results show that the substitution of concrete with ECC in the critical cast-in-place regions proved to be an effective method to improve the seismic performance of the two-story spatial of precast RC coupled shear walls.
文摘In this study, a model for dynamic instability of embedded single-walled car- bon nanotubes (SWCNTs) is presented. SWCNTs are modeled by the sinusoidal shear deformation beam theory (SSDBT). The modified couple stress theory (MCST) is con- sidered in order to capture the size effects. The surrounding elastic medium is described by a visco-Pasternak foundation model, which accounts for normal, transverse shear, and damping loads. The motion equations are derived based on Hamilton's principle. The differential quadrature method (DQM) in conjunction with the Bolotin method is used in order to calculate the dynamic instability region (DIR) of SWCNTs. The effects of differ- ent parameters, such as nonlocal parameter, visco-Pasternak foundation, mode numbers, and geometrical parameters, are shown on the dynamic instability of SWCNTs. The re- sults depict that increasing the nonlocal parameter shifts the DIR to right. The results presented in this paper would be helpful in design and manufacturing of nano-electromechanical system (NEMS) and micro-electro-mechanical system (MEMS).
基金Supported by Council of Scientific and Industrial Research(CSIR),INDIA(25(0262)/17/EMR-II).
文摘In this article,we are exploring the hemodynamics of nanofluid,flowing through a bifurcated artery with atherosclerosis in the presence of a catheter.For treating obstruction in the artery,one can use the catheter whose outer surface is carrying the drug coated with nano-particles.The resultant solvent is considered as blood nano-fluid.Blood being a complex fluid,is modeled by couple stress fluid.In the presence of nano-particles,the temperature and the concentration distribution are understood in a bifurcated stenotic artery.The concluded mathematical model is governed by coupled non-linear equations,and are solved by using the homotopy perturbation method.Consequently,we have explored is the effects of fluid and the embedded geometric parameters on the hemodynamics characteristics.It is also realized that high wall shear stress exists for couple stress nano-fluid when compared to Newtonian nano-fluid.which is computed at a location corresponding to maximum constriction(z=12.5)of the artery.
基金Project supported by the National Natural Science Foundation of China(No.50725826)the National Science and Technology Support Program(No.2008BAJ08B06)+1 种基金the National Technology Research and Development Program(No.2009AA04Z420)the Shanghai Postdoctoral fund (No.I0R21416200)
文摘Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factors such as transverse shear deformation, torsional shear deformation and their Coupling, coupling of flexure and torsion, and second shear stress are considered. According to the generalized variational theory of Hellinger-Reissner, the element stiffness matrix is derived. Examples show that the developed model is accurate and can be applied in the finite element analysis of thinwalled structures.
文摘The flow of incompressible couple stress fluid in a circular tube with stenosis and dilatations has been investigated. The stenosis was assumed to be axially symmetric and mild. The flow equations have been linearized and the expressions for the resistance to the flow, velocity, pressure drop, wall shear stress have been derived. The effects of various parameters on these flow variables have been investigated. It is found that the resistance to the flow and pressure drop increase with height of the stenosis and decrease with post stenotic dilatation. Pressure drop decreases with couple stress fluid parameter for both stenosis and post stenotic dilatation. Further, the wall shear stress increases with height of the stenosis and couple stress parameter but decreases with post stenotic dilatation and couple stress fluid parameter.