To ensure flight safety,the complex network method is used to study the influence and invulnerability of air traffic cyber physical system(CPS)nodes.According to the rules of air traffic management,the logical couplin...To ensure flight safety,the complex network method is used to study the influence and invulnerability of air traffic cyber physical system(CPS)nodes.According to the rules of air traffic management,the logical coupling relationship between routes and sectors is analyzed,an air traffic CPS network model is constructed,and the indicators of node influence and invulnerability are established.The K-shell algorithm is improved to identify node influence,and the invulnerability is analyzed under random and selective attacks.Taking Airspace in Eastern China as an example,its influential nodes are sorted by degree,namely,K-shell,the improved K-shell(IKS)and betweenness centrality.The invulnerability of air traffic CPS under different attacks is analyzed.Results show that IKS can effectively identify the influential nodes in the air traffic CPS network,and IKS and betweenness centrality are the two key indicators that affect the invulnerability of air traffic CPS.展开更多
The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal wit...The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal with this question. To improve network invulnerability, we’d better avoid dependent relations transmission and add supportive relations symmetrically.展开更多
Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy co...Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy consumption and large data transmission delay of the whole network,which greatly affects the invulnerability of the network.Therefore,an optimal deployment of heterogeneous nodes(ODHN)algorithm is proposed to enhance the invulnerability of the wireless sensor networks.The algorithm combines the advantages of DEEC(design of distributed energy efficient clustering)clustering algorithm and BAS(beetle antenna search)optimization algorithm to find the globally optimal deployment locations of heterogeneous nodes.Then,establish a shortcut to communicate with sink nodes through heterogeneous nodes.Besides,considering the practical deployment operation,we set the threshold of the mobile location of heterogeneous nodes,which greatly simplifies the deployment difficulty.Simulation results show that compared with traditional routing protocols,the proposed algorithm can make the network load more evenly,and effectively improve energy-utilization and the fault tolerance of the whole network,which can greatly improve the invulnerability of the wireless sensor networks.展开更多
Wireless Sensor Network(WSN)is an important part of the Internet of Things(IoT),which are used for information exchange and communication between smart objects.In practical applications,WSN lifecycle can be influenced...Wireless Sensor Network(WSN)is an important part of the Internet of Things(IoT),which are used for information exchange and communication between smart objects.In practical applications,WSN lifecycle can be influenced by the unbalanced distribution of node centrality and excessive energy consumption,etc.In order to overcome these problems,a heterogeneous wireless sensor network model with small world characteristics is constructed to balance the centrality and enhance the invulnerability of the network.Also,a new WSN centrality measurement method and a new invulnerability measurement model are proposed based on the WSN data transmission characteristics.Simulation results show that the life cycle and data transmission volume of the network can be improved with a lower network construction cost,and the invulnerability of the network is effectively enhanced.展开更多
为提高卫星星座网络受到攻击后的抗毁性及工作能力,提出了一种模拟退火狼群算法。该算法利用主客观权重法结合综合逼近理想排序法(TOPSIS:Technique for Order Preference by Similarity to Ideal Solution)对网络中的节点进行重要度评...为提高卫星星座网络受到攻击后的抗毁性及工作能力,提出了一种模拟退火狼群算法。该算法利用主客观权重法结合综合逼近理想排序法(TOPSIS:Technique for Order Preference by Similarity to Ideal Solution)对网络中的节点进行重要度评估,并按照节点重要度排序依次攻击。以网络连通度与网络连通效率为优化目标,卫星星座网络通信限制为约束条件,采用运动算子的思想实现狼群自适应步长的游走、召唤和围攻。使用通过优化得出的加边方案对网络结构进行优化。实验表明,与其他优化算法相比,该算法具有优越性,解决了卫星星座网络在受到攻击后工作能力下降的问题,提高了其受到攻击后的抗毁性。展开更多
基金This work was supported by the Fundamental Research Funds for the Central Universities(No.3122019191).
文摘To ensure flight safety,the complex network method is used to study the influence and invulnerability of air traffic cyber physical system(CPS)nodes.According to the rules of air traffic management,the logical coupling relationship between routes and sectors is analyzed,an air traffic CPS network model is constructed,and the indicators of node influence and invulnerability are established.The K-shell algorithm is improved to identify node influence,and the invulnerability is analyzed under random and selective attacks.Taking Airspace in Eastern China as an example,its influential nodes are sorted by degree,namely,K-shell,the improved K-shell(IKS)and betweenness centrality.The invulnerability of air traffic CPS under different attacks is analyzed.Results show that IKS can effectively identify the influential nodes in the air traffic CPS network,and IKS and betweenness centrality are the two key indicators that affect the invulnerability of air traffic CPS.
文摘The paper aims to study the invulnerability of directed interdependent networks with multiple dependency relations: dependent and supportive. We establish three models and simulate in three network systems to deal with this question. To improve network invulnerability, we’d better avoid dependent relations transmission and add supportive relations symmetrically.
基金This research was funded by the National Natural Science Foundation of China,No.61802010Hundred-Thousand-Ten Thousand Talents Project of Beijing No.2020A28+1 种基金National Social Science Fund of China,No.19BGL184Beijing Excellent Talent Training Support Project for Young Top-Notch Team No.2018000026833TD01.
文摘Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy consumption and large data transmission delay of the whole network,which greatly affects the invulnerability of the network.Therefore,an optimal deployment of heterogeneous nodes(ODHN)algorithm is proposed to enhance the invulnerability of the wireless sensor networks.The algorithm combines the advantages of DEEC(design of distributed energy efficient clustering)clustering algorithm and BAS(beetle antenna search)optimization algorithm to find the globally optimal deployment locations of heterogeneous nodes.Then,establish a shortcut to communicate with sink nodes through heterogeneous nodes.Besides,considering the practical deployment operation,we set the threshold of the mobile location of heterogeneous nodes,which greatly simplifies the deployment difficulty.Simulation results show that compared with traditional routing protocols,the proposed algorithm can make the network load more evenly,and effectively improve energy-utilization and the fault tolerance of the whole network,which can greatly improve the invulnerability of the wireless sensor networks.
基金This research was funded by the National Natural Science Foundation of China,No.61802010Hundred-Thousand-Ten Thousand Talents Project of Beijing No.2020A28+2 种基金National Social Science Fund of China,No.19BGL184Beijing Excellent Talent Training Support Project for Young Top-Notch Team No.2018000026833TD01Academic Research Projects of Beijing Union University,No.ZK30202103.
文摘Wireless Sensor Network(WSN)is an important part of the Internet of Things(IoT),which are used for information exchange and communication between smart objects.In practical applications,WSN lifecycle can be influenced by the unbalanced distribution of node centrality and excessive energy consumption,etc.In order to overcome these problems,a heterogeneous wireless sensor network model with small world characteristics is constructed to balance the centrality and enhance the invulnerability of the network.Also,a new WSN centrality measurement method and a new invulnerability measurement model are proposed based on the WSN data transmission characteristics.Simulation results show that the life cycle and data transmission volume of the network can be improved with a lower network construction cost,and the invulnerability of the network is effectively enhanced.
文摘为提高卫星星座网络受到攻击后的抗毁性及工作能力,提出了一种模拟退火狼群算法。该算法利用主客观权重法结合综合逼近理想排序法(TOPSIS:Technique for Order Preference by Similarity to Ideal Solution)对网络中的节点进行重要度评估,并按照节点重要度排序依次攻击。以网络连通度与网络连通效率为优化目标,卫星星座网络通信限制为约束条件,采用运动算子的思想实现狼群自适应步长的游走、召唤和围攻。使用通过优化得出的加边方案对网络结构进行优化。实验表明,与其他优化算法相比,该算法具有优越性,解决了卫星星座网络在受到攻击后工作能力下降的问题,提高了其受到攻击后的抗毁性。