DEAR EDITOR,Bostrychus,a genus in the family Eleotridae of the order Gobiiformes,was first established by Lacepède in 1801(Buffon,1801).Bostrychus currently contains seven recognized species,including two recent ...DEAR EDITOR,Bostrychus,a genus in the family Eleotridae of the order Gobiiformes,was first established by Lacepède in 1801(Buffon,1801).Bostrychus currently contains seven recognized species,including two recent additions(B.microphthalmos and B.scalaris)described in 2005(Hoese&Kottelat,2005)and 2008(Larson,2008),respectively.The natural range of Bostrychus species extends from East Asia to Australia,with the exception of B.africanus,Steindachner,1879,which is distributed in West Africa(Herre,1946).Among the recognized species,B.sinensis,B.zonatus,and B.africanus are relatively widespread,inhabiting diverse areas from estuaries to freshwater streams,while B.scalaris is only found at a single mangrove site in the Selangor State of Malaysia(Larson,2008).The remaining three species exhibit a high degree of habitat specialization and are highly localized(Hoese&Kottelat,2005):B.microphthalmos inhabits a cave stream in the Maros karst of southern Sulawesi,B.aruensis is confined to freshwater environments in the Aru Islands of Indonesia,and B.strigogenys is found only in freshwater areas in southern Papua New Guinea and Irian Jaya.展开更多
To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu...To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.展开更多
Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in th...Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in their power capacity due to insufficient coupling.The new antenna design takes into account both wave coupling and absorption processes through comprehensive wave coupling and absorption codes,with the dominant parallel wave number k∥of 7.5 m-1at dipole phasing.Through the use of these new ICRF antennas,we are able to achieve 3.8 MW output power and 360 s operation,respectively.The initial experimental results demonstrate the reliability of the antenna design method.展开更多
This study investigated the calcareous nannofossil assemblages in detail from the early Miocene aged Lice Formation outcropping in the Kahramanmara? basin. The biostratigraphy of calcareous nannofossils was outlined a...This study investigated the calcareous nannofossil assemblages in detail from the early Miocene aged Lice Formation outcropping in the Kahramanmara? basin. The biostratigraphy of calcareous nannofossils was outlined and paleoenvironmental features determined. In 81 samples taken from three measured sections in the region, 17 calcareous nannofossil genus and 48 nannofossil species were identified. These calcareous nannofossil genus and species identified the Lice Formation as being in the CNM4 nannofossil biozone. The abundance and diversity of early Miocene calcareous nannofossil species varied in the measured sections, with the samples generally moderate-poor, apart from a few samples. The relative abundance of individuals of Cyclicargolithus floridanus, Coccolithus pelagicus, Reticulofenestra hagii and Sphenolithus moriformis species, with paleoecological importance identified in the study region, indicate that in early Miocene times, the basin in which the Lice Formation deposited was meso-eutrophic with excess nutrient input, temperate and generally stable shallow marine conditions.展开更多
Adaptive optics systems are the most powerful tools to counteract the image blurring caused by atmospheric turbulence,allowing ground-based telescopes to capture high-resolution images.A critical parameter influencing...Adaptive optics systems are the most powerful tools to counteract the image blurring caused by atmospheric turbulence,allowing ground-based telescopes to capture high-resolution images.A critical parameter influencing adaptive optics system performance is the atmospheric refractive index structure constant,C_(n)^(2),which characterizes the intensity of atmospheric optical turbulence as a function of altitude.Given its simplicity,the lunar scintillometer is the preferred method for detecting atmospheric turbulence in challenging environments like Dome A in Antarctica,where sites are still in the developmental stages and local environmental conditions are extremely harsh.However,optimizing the performance of such instruments requires carefully determining the baseline configuration of photon sensors according to each site's specific optical turbulence profile characteristics.This study uses a Monte Carlo method to identify the optimal configuration for the KunLun Turbulence Profiler(KLTP),an instrument comparable to the lunar scintillometer,developed for use at Dome A.Simulations conducted using the obtained optimal baseline configuration recovered three different model optical turbulence profiles,demonstrating the effectiveness of our method in obtaining an optimal baseline configuration.Our approach can be easily applied to baseline design for similar turbulence profilers at other sites.展开更多
Context/Objectives: Tuberculosis (TB) and HIV co-infection is a serious health problem in Cameroon. The problems associated with poor adherence to treatment are on the increase worldwide. This problem can be observed ...Context/Objectives: Tuberculosis (TB) and HIV co-infection is a serious health problem in Cameroon. The problems associated with poor adherence to treatment are on the increase worldwide. This problem can be observed in all situations where patients are required to administer their own medication, whatever the type of illness. The general objective of this study was to assess the factors affecting adherence to treatment among HIV-TB co-infected patients in health facilities in the East Region in the COVID context. Method: A retrospective cohort study before and during COVID-19 was conducted in HIV care units in 13 health districts in the East Region of Cameroon. Data were collected using a questionnaire recorded in the Kobo Collect android application, analyzed using SPSS version 25 software and plotted using Excel. Results: The pre-COVID-19 cohort compared to the during-COVID-19 cohort had a 1.90 risk of not adhering to treatment (OR: 1.90, CI {1.90 - 3.37}) and the difference was statistically significant at the 5% level (p-value = 0.029). Frequency of adherence was 65.4% (140/214). Adherence before COVID-19 was 56.9% whereas during COVID-19, it was 74.3%. Conclusion: The implementation of targeted interventions in the COVID-19 context, using evidence-based data and integrating the individual needs of HIV-TB co-infected patients, improved adherence to concurrent anti-tuberculosis treatment and antiretroviral therapy during the COVID-19 Era.展开更多
A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to...A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.展开更多
To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system w...To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system was designed and implemented on the Experimental Advanced Superconducting Tokamak(EAST). This system leverages two symmetric optics for joint plasma imaging. The optical system exhibits a spatial resolution less than 2 mm at the poloidal cross-section, distortion within the field of view below 10%, and relative illumination of 91%.The high-quality images obtained enable clear observation of both the plasma boundary position and the characteristics of components within the vacuum vessel. Following system calibration and coordinate transformation, the image coordinate boundary features are mapped to the tokamak coordinate system. Utilizing this system, the plasma boundary was reconstructed, and the resulting representation showed alignment with the EFIT(Equilibrium Fitting) results. This underscores the system's superior performance in boundary reconstruction applications and provides a diagnostic foundation for boundary shape control based on visible spectral imaging.展开更多
基金supported by the National Natural Science Foundation of China(41776143)。
文摘DEAR EDITOR,Bostrychus,a genus in the family Eleotridae of the order Gobiiformes,was first established by Lacepède in 1801(Buffon,1801).Bostrychus currently contains seven recognized species,including two recent additions(B.microphthalmos and B.scalaris)described in 2005(Hoese&Kottelat,2005)and 2008(Larson,2008),respectively.The natural range of Bostrychus species extends from East Asia to Australia,with the exception of B.africanus,Steindachner,1879,which is distributed in West Africa(Herre,1946).Among the recognized species,B.sinensis,B.zonatus,and B.africanus are relatively widespread,inhabiting diverse areas from estuaries to freshwater streams,while B.scalaris is only found at a single mangrove site in the Selangor State of Malaysia(Larson,2008).The remaining three species exhibit a high degree of habitat specialization and are highly localized(Hoese&Kottelat,2005):B.microphthalmos inhabits a cave stream in the Maros karst of southern Sulawesi,B.aruensis is confined to freshwater environments in the Aru Islands of Indonesia,and B.strigogenys is found only in freshwater areas in southern Papua New Guinea and Irian Jaya.
基金supported by the Chinese-Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project BASIC (Grant No.325440)the Horizon 2020 project APPLICATE (Grant No.727862)High-performance computing and storage resources were performed on resources provided by Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage in Norway (through projects NS8121K,NN8121K,NN2345K,NS2345K,NS9560K,NS9252K,and NS9034K)。
文摘To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.
基金supported by the National Key Research and Development Program of China (Nos. 2019YFE03070000and 2019YFE03070003)National Natural Science Foundation of China (Nos. 11975265 and 11775258)+2 种基金Comprehensive Research Facility for Fusion Technology Program of China (No. 2018-000052-73-01-001228)the Open Fund of Magnetic Confinement Fusion Laboratory of Anhui Province (No. 2021AMF01001)Hefei Science Center,CAS(No. 2021HSC-KPRD001)。
文摘Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in their power capacity due to insufficient coupling.The new antenna design takes into account both wave coupling and absorption processes through comprehensive wave coupling and absorption codes,with the dominant parallel wave number k∥of 7.5 m-1at dipole phasing.Through the use of these new ICRF antennas,we are able to achieve 3.8 MW output power and 360 s operation,respectively.The initial experimental results demonstrate the reliability of the antenna design method.
基金the Yozgat Bozok University Scientific Research Projects Unit (Grant No. 6602aMUH/20-385)。
文摘This study investigated the calcareous nannofossil assemblages in detail from the early Miocene aged Lice Formation outcropping in the Kahramanmara? basin. The biostratigraphy of calcareous nannofossils was outlined and paleoenvironmental features determined. In 81 samples taken from three measured sections in the region, 17 calcareous nannofossil genus and 48 nannofossil species were identified. These calcareous nannofossil genus and species identified the Lice Formation as being in the CNM4 nannofossil biozone. The abundance and diversity of early Miocene calcareous nannofossil species varied in the measured sections, with the samples generally moderate-poor, apart from a few samples. The relative abundance of individuals of Cyclicargolithus floridanus, Coccolithus pelagicus, Reticulofenestra hagii and Sphenolithus moriformis species, with paleoecological importance identified in the study region, indicate that in early Miocene times, the basin in which the Lice Formation deposited was meso-eutrophic with excess nutrient input, temperate and generally stable shallow marine conditions.
基金financially supported by the National Natural Science Foundation of China (12373092, 12273027, 11733007, 11873010, 12133010)the Nebula Talents Program of the National Astronomical Observatories, CAS+1 种基金the Sichuan Youth Science and Technology Innovation Research Team (21CXTD0038)the Innovation Team F unds of China West Normal University (KCXTD2022-6).
文摘Adaptive optics systems are the most powerful tools to counteract the image blurring caused by atmospheric turbulence,allowing ground-based telescopes to capture high-resolution images.A critical parameter influencing adaptive optics system performance is the atmospheric refractive index structure constant,C_(n)^(2),which characterizes the intensity of atmospheric optical turbulence as a function of altitude.Given its simplicity,the lunar scintillometer is the preferred method for detecting atmospheric turbulence in challenging environments like Dome A in Antarctica,where sites are still in the developmental stages and local environmental conditions are extremely harsh.However,optimizing the performance of such instruments requires carefully determining the baseline configuration of photon sensors according to each site's specific optical turbulence profile characteristics.This study uses a Monte Carlo method to identify the optimal configuration for the KunLun Turbulence Profiler(KLTP),an instrument comparable to the lunar scintillometer,developed for use at Dome A.Simulations conducted using the obtained optimal baseline configuration recovered three different model optical turbulence profiles,demonstrating the effectiveness of our method in obtaining an optimal baseline configuration.Our approach can be easily applied to baseline design for similar turbulence profilers at other sites.
文摘Context/Objectives: Tuberculosis (TB) and HIV co-infection is a serious health problem in Cameroon. The problems associated with poor adherence to treatment are on the increase worldwide. This problem can be observed in all situations where patients are required to administer their own medication, whatever the type of illness. The general objective of this study was to assess the factors affecting adherence to treatment among HIV-TB co-infected patients in health facilities in the East Region in the COVID context. Method: A retrospective cohort study before and during COVID-19 was conducted in HIV care units in 13 health districts in the East Region of Cameroon. Data were collected using a questionnaire recorded in the Kobo Collect android application, analyzed using SPSS version 25 software and plotted using Excel. Results: The pre-COVID-19 cohort compared to the during-COVID-19 cohort had a 1.90 risk of not adhering to treatment (OR: 1.90, CI {1.90 - 3.37}) and the difference was statistically significant at the 5% level (p-value = 0.029). Frequency of adherence was 65.4% (140/214). Adherence before COVID-19 was 56.9% whereas during COVID-19, it was 74.3%. Conclusion: The implementation of targeted interventions in the COVID-19 context, using evidence-based data and integrating the individual needs of HIV-TB co-infected patients, improved adherence to concurrent anti-tuberculosis treatment and antiretroviral therapy during the COVID-19 Era.
基金funded and supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the HFIPS Director’s Fund(No.YZJJKX202301)+1 种基金the Anhui Provincial Major Science and Technology Project(No.2023z020004)Task JB22001 from the Anhui Provincial Department of Economic and Information Technology。
文摘A real-time data processing system is designed for the carbon dioxide dispersion interferometer(CO_(2)-DI)on EAST.The system utilizes the parallel and pipelining capabilities of an fieldprogrammable gate array(FPGA)to digitize and process the intensity of signals from the detector.Finally,the real-time electron density signals are exported through a digital-to-analog converter(DAC)module in the form of analog signals.The system has been successfully applied in the CO_(2)-DI system to provide low-latency electron density input to the plasma control system on EAST.Experimental results of the latest campaign with long-pulse discharges on EAST(2022–2023)demonstrate that the system can respond effectively in the case of rapid density changes,proving its reliability and accuracy for future electron density calculation.
基金supported by the National MCF Energy R&D Program of China (Nos. 2018YFE0302103 and 2018YFE 0302100)National Natural Science Foundation of China (Nos. 12205195 and 11975277)。
文摘To investigate the potential of utilizing visible spectral imaging for controlling the plasma boundary shape during stable operation of plasma in future tokamak, a D_α band symmetric visible light diagnostic system was designed and implemented on the Experimental Advanced Superconducting Tokamak(EAST). This system leverages two symmetric optics for joint plasma imaging. The optical system exhibits a spatial resolution less than 2 mm at the poloidal cross-section, distortion within the field of view below 10%, and relative illumination of 91%.The high-quality images obtained enable clear observation of both the plasma boundary position and the characteristics of components within the vacuum vessel. Following system calibration and coordinate transformation, the image coordinate boundary features are mapped to the tokamak coordinate system. Utilizing this system, the plasma boundary was reconstructed, and the resulting representation showed alignment with the EFIT(Equilibrium Fitting) results. This underscores the system's superior performance in boundary reconstruction applications and provides a diagnostic foundation for boundary shape control based on visible spectral imaging.