Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).How...Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP.展开更多
In this study, a combination of satellite observations and reanalysis datasets is used to analyze the spatiotemporal distribution, classification and source of pollutants over the eastern slope of the Tibetan Plateau(...In this study, a combination of satellite observations and reanalysis datasets is used to analyze the spatiotemporal distribution, classification and source of pollutants over the eastern slope of the Tibetan Plateau(ESTP). The aerosol optical depth(AOD) over the ESTP is extremely large and even larger than some important industrialized regions and deserts. The main aerosol component over the ESTP is sulfate, followed by carbonaceous and dust aerosols. Local emissions related to human activity directly contribute to the accumulation of sulfate and carbonaceous aerosols over the Sichuan Basin. In addition, in spring, abundant carbonaceous aerosols emitted from forest, grassland and savanna fires in Southeast Asia can be transported by the prevailing southwesterly wind to southern China and the ESTP. The dust AOD over the ESTP peaks in spring because of the transport from the Taklimakan and Gobi deserts. Additionally, the high aerosol loading over the ESTP is also directly related to the meteorological background. Due to the special topography, the terrain-driven circulation can trap aerosols in the Sichuan Basin and these aerosols can climb along the ESTP due to the perennial updraft. The aerosol loading is lowest in summer because of effective wet deposition induced by the strong precipitation and better dispersion conditions due to the larger vertical temperature gradients and ascending air movement enhanced by the plateau heat pump effect. In contrast,the aerosol loading is greatest in winter. Abundant anthropogenic aerosols over the ESTP may generate some climatic and environmental risks and consequently greatly influence the downstream regions.展开更多
Enrichment of hydrocarbon reservoir relates to the slope break types in continental basin(sag)in China. Division and analysis of genetic types of slope break will help to study the enrichment regularity of hydrocarbon...Enrichment of hydrocarbon reservoir relates to the slope break types in continental basin(sag)in China. Division and analysis of genetic types of slope break will help to study the enrichment regularity of hydrocarbon reservoir and is conducive to the guiding of future development in exploration and enhancing prediction accuracy.This paper,guided by the theory of sequence stratigraphy and using high-resolution three-dimensional seismic data,drilling and other information,takes into account the characteristics展开更多
Based on the chemical and stable carbon isotopic composition of natural gas and light hydrocarbons, along with regional geological data, the genetic type, origin and migration of natural gases in the L lithologic gas ...Based on the chemical and stable carbon isotopic composition of natural gas and light hydrocarbons, along with regional geological data, the genetic type, origin and migration of natural gases in the L lithologic gas field, the eastern slope of Yinggehai Sag were investigated. The results show that these gases have a considerable variation in chemical composition, with 33.6%–91.5% hydrocarbon, 0.5%-62.2% CO2, and dryness coefficients ranging from 0.94 to 0.99. The alkane gases are characterized by δ13C1 values of -40.71‰--27.40‰,δ13C2 values of –27.27‰– –20.26‰, and the isoparaffin contents accounting for 55%–73% of the total C5–C7 light hydrocarbons. These data indicate that the natural gases belong to the coal-type gas and are mainly derived from the Miocene terrigenous organic-rich source rocks. When the CO2 contents are greater than 10%, the δ13CCO2 values are –9.04‰ to – 0.95‰ and the associated helium has a 3He/4He value of 7.78×10^–8, suggesting that the CO2 here is crustal origin and inorganic and mainly sourced from the thermal decomposition of calcareous mudstone and carbonate in deep strata. The gas migrated in three ways, i.e., migration of gas from the Miocene source rock to the reservoirs nearby;vertical migration of highly mature gas from deeper Meishan and Sanya Formations source rock through concealed faults;and lateral migration along permeable sandbodies. The relatively large pressure difference between the “source” and “reservoir” is the key driving force for the vertical and lateral migration of gas. Short-distance migration and effective “source - reservoir” match control the gas distribution.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42175002,42030611,42075013)the Natural Science Foundation of Sichuan,China(Grant No.2023NSFSC0242)the Innovation Team Fund of Southwest Regional Meteorological Center,China Meteorological Administration(Grant No.XNQYCXTD-202202)。
文摘Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91737101 and 91744311)supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA2006010301)
文摘In this study, a combination of satellite observations and reanalysis datasets is used to analyze the spatiotemporal distribution, classification and source of pollutants over the eastern slope of the Tibetan Plateau(ESTP). The aerosol optical depth(AOD) over the ESTP is extremely large and even larger than some important industrialized regions and deserts. The main aerosol component over the ESTP is sulfate, followed by carbonaceous and dust aerosols. Local emissions related to human activity directly contribute to the accumulation of sulfate and carbonaceous aerosols over the Sichuan Basin. In addition, in spring, abundant carbonaceous aerosols emitted from forest, grassland and savanna fires in Southeast Asia can be transported by the prevailing southwesterly wind to southern China and the ESTP. The dust AOD over the ESTP peaks in spring because of the transport from the Taklimakan and Gobi deserts. Additionally, the high aerosol loading over the ESTP is also directly related to the meteorological background. Due to the special topography, the terrain-driven circulation can trap aerosols in the Sichuan Basin and these aerosols can climb along the ESTP due to the perennial updraft. The aerosol loading is lowest in summer because of effective wet deposition induced by the strong precipitation and better dispersion conditions due to the larger vertical temperature gradients and ascending air movement enhanced by the plateau heat pump effect. In contrast,the aerosol loading is greatest in winter. Abundant anthropogenic aerosols over the ESTP may generate some climatic and environmental risks and consequently greatly influence the downstream regions.
文摘Enrichment of hydrocarbon reservoir relates to the slope break types in continental basin(sag)in China. Division and analysis of genetic types of slope break will help to study the enrichment regularity of hydrocarbon reservoir and is conducive to the guiding of future development in exploration and enhancing prediction accuracy.This paper,guided by the theory of sequence stratigraphy and using high-resolution three-dimensional seismic data,drilling and other information,takes into account the characteristics
基金Supported by the China National Science and Technology Major Project(2016ZX05024-005)
文摘Based on the chemical and stable carbon isotopic composition of natural gas and light hydrocarbons, along with regional geological data, the genetic type, origin and migration of natural gases in the L lithologic gas field, the eastern slope of Yinggehai Sag were investigated. The results show that these gases have a considerable variation in chemical composition, with 33.6%–91.5% hydrocarbon, 0.5%-62.2% CO2, and dryness coefficients ranging from 0.94 to 0.99. The alkane gases are characterized by δ13C1 values of -40.71‰--27.40‰,δ13C2 values of –27.27‰– –20.26‰, and the isoparaffin contents accounting for 55%–73% of the total C5–C7 light hydrocarbons. These data indicate that the natural gases belong to the coal-type gas and are mainly derived from the Miocene terrigenous organic-rich source rocks. When the CO2 contents are greater than 10%, the δ13CCO2 values are –9.04‰ to – 0.95‰ and the associated helium has a 3He/4He value of 7.78×10^–8, suggesting that the CO2 here is crustal origin and inorganic and mainly sourced from the thermal decomposition of calcareous mudstone and carbonate in deep strata. The gas migrated in three ways, i.e., migration of gas from the Miocene source rock to the reservoirs nearby;vertical migration of highly mature gas from deeper Meishan and Sanya Formations source rock through concealed faults;and lateral migration along permeable sandbodies. The relatively large pressure difference between the “source” and “reservoir” is the key driving force for the vertical and lateral migration of gas. Short-distance migration and effective “source - reservoir” match control the gas distribution.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.