期刊文献+
共找到1,918篇文章
< 1 2 96 >
每页显示 20 50 100
Analysis,Prediction and Process Optimization Concerning Ammonium Chloride Corrosion in Ebullated-Bed Hydrogenation Unit for Treating Residual Oil 被引量:1
1
作者 Bao Zhenyu Wang Ning +2 位作者 Zhang Hongfei Duan Yongfeng Yu Fengchang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第4期108-116,共9页
Ammonium chloride corrosion in the reactor effluent system remains to be a barrier for the safe operation of the ebullated-bed hydrogenation unit as impurity content is higher compared with that of the ordinary hydrog... Ammonium chloride corrosion in the reactor effluent system remains to be a barrier for the safe operation of the ebullated-bed hydrogenation unit as impurity content is higher compared with that of the ordinary hydrogenation units.In this research,a Sinopec envisaged case study was conducted on feed oil containing 2.92μg/g of Cl and 0.38%of N,because the impurity content of feed oil was representative in residue oil.The deposition patterns in heat exchangers were investigated by changing process variables,and then water wash strategy was optimized in view of the relative humidity to obtain a minimum water flowrate,and finally the process optimization suggestions concerning the operation of heat exchangers were proposed.Results show that with the measured content of nitrogen and chlorine in the feed,the NH4Cl deposition temperature of hot high-pressure vapor and hot low-pressure vapor was 223.4℃ and 173.7℃,respectively,and the minimum water wash flowrate for heat exchangers of hot high-pressure vapor with mixed hydrogen and hot low-pressure vapor with cold low-pressure oil was 38.0 t/h and 5.4 t/h,respectively.Water wash should be carried out intermittently upstream of the heat exchanger tube passes.In consideration of energy consumption,it is recommended to reduce the tube pass outlet temperature of the above heat exchangers to 240℃ and 190℃,respectively. 展开更多
关键词 ebullated-bed hydrogenation CORROSION ammonium salt water wash deposition temperature
下载PDF
Navigating challenges and opportunities of machine learning in hydrogen catalysis and production processes: Beyond algorithm development
2
作者 Mohd Nur Ikhmal Salehmin Sieh Kiong Tiong +5 位作者 Hassan Mohamed Dallatu Abbas Umar Kai Ling Yu Hwai Chyuan Ong Saifuddin Nomanbhay Swee Su Lim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期223-252,共30页
With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a c... With the projected global surge in hydrogen demand, driven by increasing applications and the imperative for low-emission hydrogen, the integration of machine learning(ML) across the hydrogen energy value chain is a compelling avenue. This review uniquely focuses on harnessing the synergy between ML and computational modeling(CM) or optimization tools, as well as integrating multiple ML techniques with CM, for the synthesis of diverse hydrogen evolution reaction(HER) catalysts and various hydrogen production processes(HPPs). Furthermore, this review addresses a notable gap in the literature by offering insights, analyzing challenges, and identifying research prospects and opportunities for sustainable hydrogen production. While the literature reflects a promising landscape for ML applications in hydrogen energy domains, transitioning AI-based algorithms from controlled environments to real-world applications poses significant challenges. Hence, this comprehensive review delves into the technical,practical, and ethical considerations associated with the application of ML in HER catalyst development and HPP optimization. Overall, this review provides guidance for unlocking the transformative potential of ML in enhancing prediction efficiency and sustainability in the hydrogen production sector. 展开更多
关键词 Machine learning Computational modeling HER catalyst synthesis hydrogen energy hydrogen production processes Algorithm development
下载PDF
100 W-class green hydrogen production from ammonia at a dual-layer electrode containing a Pt-Ir catalyst for an alkaline electrolytic process
3
作者 Donghyun Yoon Sunki Chung +2 位作者 Minjun Choi Eunhyeok Yang Jaeyoung Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期352-360,I0009,共10页
Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and i... Ammonia allows storage and transport of hydrogen over long distances and is an attractive potential hydrogen carrier.Electrochemical decomposition has recently been used for the conversion of ammonia to hydrogen and is regarded as a future technology for production of CO_(2)-free pure hydrogen.Herein,a heterostructural Pt-Ir dual-layer electrode is developed and shown to achieve successful long-term operation in an ammonia electrolyzer with an anion exchange membrane(AEM).This electrolyzer consisted of eight membra ne electrode assemblies(MEAs)with a total geometric area of 200 cm~2 on the anode side,which resulted in a hydrogen production rate of 25 L h~(-1).We observed the degradation in MEA performance attributed to changes in the anode catalyst layer during hydrogen production via ammonia electrolysis.Furthermore,we demonstrated the relationship between the ammonia oxidation reaction(AOR)and the oxygen evolution reaction(OER). 展开更多
关键词 Ammonia oxidation Dual-layer catalyst Green hydrogen Electrolytic process Oxygen evolution reaction
下载PDF
Application of Resid Hydrogenation Process in China's Mainland 被引量:1
4
作者 Diao Wangsheng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2007年第1期7-12,共6页
This article mainly refers to a brief introduction on the design and operation of resid hydrogenation units in China's Mainland in order to keep the peers abreast of the basic status of aoolication of resid hydrog... This article mainly refers to a brief introduction on the design and operation of resid hydrogenation units in China's Mainland in order to keep the peers abreast of the basic status of aoolication of resid hydrogenation process in the China's Mainland. 展开更多
关键词 resid hydrogenation process unit design conditions production and operation
下载PDF
Separation of Formate Ion from a Catalytic Mixture after a Hydrogenation Process of Bicarbonate Ion and Generation of Formic Acid—The Last Stage of the Formic Acid Cycle
5
作者 Ziv Treigerman Yoel Sasson 《American Journal of Analytical Chemistry》 2019年第8期296-315,共20页
Formic acid is recognized as a promising hydrogen carrier. It readily decomposes to release hydrogen (and carbon dioxide) in the presence of apposite catalysts. The main deficiency of this practice is that the reverse... Formic acid is recognized as a promising hydrogen carrier. It readily decomposes to release hydrogen (and carbon dioxide) in the presence of apposite catalysts. The main deficiency of this practice is that the reverse reaction, the hydrogenation of carbon dioxide to formic acid is an uphill reaction necessitating extreme conditions. Carbon dioxide should be converted to bicarbonate salts since their hydrogenation is reasonable for storing hydrogen. The related approach has a drawback as formate salts are produced. The latter has lower weight percentage of hydrogen and they must be converted to formic acid. The goals of our research were to separate formate salt from the reaction mixture and to convert it to formic acid. In this paper, we present a process that combines the advantages of both methodologies—formic acid is the carrier, but the hydrogen is charged to a bicarbonate ion. This stage completes the formic acid cycle (FAC), which could operate as a continuous process for the production and storage of hydrogen. Additional research, including proper rescaling and optimization, should be carried out in order to assess the potential of such a process as a basis for replacing the present day combustion of fossil fuels with hydrogen usage in fuel cells. 展开更多
关键词 Green CHEMISTRY hydrogen Storage ION Exchange SEPARATION process
下载PDF
Degradation of 2,4-dichlorophenoxyacetic acid in water by ozonehydrogen peroxide process 被引量:16
6
作者 YU Ying-hui MA Jun HOU Yan-jun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1043-1049,共7页
This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O2/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation... This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O2/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation of 2,4-dichlorophenoxyacetic acid was studied under different H202/O3 molar ratio and pH value. Meanwhile, TOC removal was investigated both in distilled water and tap water. The influences of ozone transfer and consumed hydrogen peroxide were also discussed. The degradation products and oxidation intermediates were identified by GC-MS and LC-MS. A possible reaction mechanism was thus proposed. 展开更多
关键词 2 4-dichlorophenoxyacetic acid OZONE hydrogen peroxide advanced oxidation process
下载PDF
Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review 被引量:22
7
作者 Qian Li Xi Lin +4 位作者 Qun Luo Yuʼan Chen Jingfeng Wang Bin Jiang Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期32-48,共17页
High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal ki... High hydrogen absorption and desorption rates are two significant index parameters for the applications of hydrogen storage tanks.The analysis of the hydrogen absorption and desorption behavior using the isothermal kinetic models is an efficient way to investigate the kinetic mechanism.Multitudinous kinetic models have been developed to describe the kinetic process.However,these kinetic models were de-duced based on some assumptions and only appropriate for specific kinetic measurement methods and rate-controlling steps(RCSs),which sometimes lead to confusion during application.The kinetic analysis procedures using these kinetic models,as well as the key kinetic parameters,are unclear for many researchers who are unfamiliar with this field.These problems will prevent the kinetic models and their analysis methods from revealing the kinetic mechanism of hydrogen storage alloys.Thus,this review mainly focuses on the summarization of kinetic models based on different kinetic measurement methods and RCSs for the chemisorption,surface penetration,diffusion of hydrogen,nucleation and growth,and chemical reaction processes.The analysis procedures of kinetic experimental data are expounded,as well as the effects of temperature,hydrogen pressure,and particle radius.The applications of the kinetic models for different hydrogen storage alloys are also introduced. 展开更多
关键词 hydrogen storage metal hydrides hydrogen absorption process hydrogen desorption process kinetic models
下载PDF
Industrial application prospects and key issues of the pure-hydrogen reduction process 被引量:7
8
作者 Lei Wang Peimin Guo +1 位作者 Lingbing Kong Pei Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第10期1922-1931,共10页
The industrial application prospect and key issues in basic theory and application are discussed by the methods of theoretical analysis and calculation to promote the development of the pure-hydrogen reduction process... The industrial application prospect and key issues in basic theory and application are discussed by the methods of theoretical analysis and calculation to promote the development of the pure-hydrogen reduction process.According to the discussion of thermodynamics and kinetics of pure-hydrogen reduction reaction,the reduction reaction of iron oxide by pure hydrogen is an endothermic reaction,and the reaction rate of hydrogen reduction is significantly faster than that of carbon reduction.To explore the feasibility of the industrial applications of pure-hydrogen reduction,we design the hydrogen reduction reactor and process with reference to the industrialized hydrogen-rich reduction process and put forward the methods of appropriately increasing the reduction temperature,pressure,and temperature of iron ore into the furnace to accelerate the reaction rate and promote the reduction of iron oxide.The key technical parameters in engineering applications,such as hydrogen consumption,circulating gas volume,and heat balance,are discussed by theoretical calculations,and the optimized parameter values are proposed.The process parameters,cost,advantages,and disadvantages of various current hydrogen production methods are compared,and the results show that hydrogen production by natural gas reforming has a good development prospect.Through the discussion of the corrosion mechanism of high-temperature and high-pressure hydrogen on heat-resistant steel materials and the corrosion mechanism of H_2S in the hydrogen gas on steel,the technical ideas of developing new metal temperature-resistant materials,metal coating materials,and controlling gas composition are put forward to provide guidance for the selection of heater and reactor materials.Finally,the key factors affecting the smooth operation of the hydrogen reduction process in engineering applications are analyzed,offering a reference for the industrial application of the purehydrogen reduction process. 展开更多
关键词 pure hydrogen reduction process design engineering application reactor material sulfur and nitrogen balance
下载PDF
Catalytic transfer hydrogenation of levulinate ester intoγ-valerolactone over ternary Cu/ZnO/Al2O3 catalyst 被引量:2
9
作者 Chuntao Zhang Zhibao Huo +4 位作者 Dezhang Ren Zhiyuan Song Yunjie Liu Fangming Jin Wanning Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第5期189-197,共9页
An effective catalytic transfer hydrogenation (CTH) process of bio-based levulinate esters into γ-valerolactone (GVL) was explored over ternary Cu/ZnO/Al2O3 catalyst which was prepared by coprecipitation method and c... An effective catalytic transfer hydrogenation (CTH) process of bio-based levulinate esters into γ-valerolactone (GVL) was explored over ternary Cu/ZnO/Al2O3 catalyst which was prepared by coprecipitation method and could be sustainably used. As a result, quantitative conversion of ethyl levulinate (EL) and 99.0% yield of GVL were obtained in the CTH process using i-PrOH as hydrogen donor. The Cu/ZnO/Al2O3 catalyst with high-surface-area could be reused at least four times without the loss of catalytic activity. Furthermore, the structure and properties of Cu/ZnO/Al2O3 catalyst was characterized through XRD, BET, SEM, TEM and H2-TPR. Also, the influence of different support oxides and calcination temperatures was investigated. 展开更多
关键词 Bio-based COMPOUNDS Cu/ZnO/Al2O3 TRANSFER hydrogenation γ-valerolactone Green process
下载PDF
Effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides 被引量:1
10
作者 许磊 赵金良 +4 位作者 杨静洁 张红国 刘丹敏 岳明 蒋毅坚 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期384-388,共5页
In this paper, we study the effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La(1-x)PrxFe11.4Si1.6Hy hydrides. The powder x-ray diffraction patterns of the La1-xPrxFe11.4Si1.6... In this paper, we study the effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La(1-x)PrxFe11.4Si1.6Hy hydrides. The powder x-ray diffraction patterns of the La1-xPrxFe11.4Si1.6 and its hydrides show that each of the alloys is crystallized into the single phase of cubic Na Zn13-type structure. There are hydrogen-absorbing plateaus under 0.4938 MPa and 0.4882 MPa in the absorbing curves for the La0.8Pr0.2Fe11.4Si1.6 and La0.6Pr0.4Fe11.4Si1.6 compounds. The releasing processes lag behind the absorbing process, which is obviously different from the coincidence between absorbing and releasing curves of the La Fe11.4Si1.6 compound. The remnant hydrogen content for La0.6Pr0.4Fe11.4Si1.6 is significantly more than that for La0.8Pr0.2Fe11.4Si1.6 after hydrogen desorption, indicating that more substitutions of Pr for La are beneficial to retaining more hydrogen atoms in the alloys. The values of maximum magnetic entropy change are 14.91 J/kg·K and 17.995 J/kg·K for La0.8Pr0.2Fe11.4Si1.6H0.13 and La0.6Pr0.4Fe11.4Si1.6H0.87,respectively. 展开更多
关键词 La(Fe Si)13 compounds hydrogenating process magnetocaloric effect magnetic refrigeration materials
下载PDF
Control of reactive dividing wall column for selective hydrogenation and separation of C3 stream 被引量:5
11
作者 Xing Qian Shengkun Jia +2 位作者 Yiqing Luo Xigang Yuan Kuo-Tsong Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第9期1213-1228,共16页
In our previous work, the reactive dividing wall column(RDWC) was proposed and proved to be effective for selective hydrogenation and separation of C3 stream. In the present paper, the dynamics and control of the prop... In our previous work, the reactive dividing wall column(RDWC) was proposed and proved to be effective for selective hydrogenation and separation of C3 stream. In the present paper, the dynamics and control of the proposed RDWC are investigated. Four control structures including composition and temperature controls are proposed. The feed forward controllers are employed in the four control strategies to shorten the dynamic response time, reduce the maximum deviations and offer an immediate adjustment. The control structures are compared by applying them into the RDWC system with 20% disturbances in both the feed flow rate and the feed compositions, and the results are discussed. 展开更多
关键词 process control C3 stream selective hydrogenation Reactive dividing wall column
下载PDF
Electroless Plating of Palladium Membranes on Porous Substrates for Hydrogen Separation and the Effects of Process Factors on Plating Rate and Efficiency: A Review 被引量:1
12
作者 Abubakar Alkali 《Journal of Power and Energy Engineering》 2020年第2期1-19,共19页
The electroless plating of palladium and palladium alloy membranes is fast becoming an important and enabling technology. This is more so when juxtaposed with the rising demand for high purity hydrogen for application... The electroless plating of palladium and palladium alloy membranes is fast becoming an important and enabling technology. This is more so when juxtaposed with the rising demand for high purity hydrogen for applications particularly in proton exchange membrane fuel cells (PEMFC). The effect of process factors such as sensitization and activation during surface modification, concentration of the reducing agent, plating temperature, time, pH, additives, air aeration on plating efficiency, quality of the palladium film and deposit morphology is reviewed with the aim of identifying areas requiring further investigation. The paper also reviews how these process factors could be optimised for better plating efficiency and overall membrane quality. The concentration of the reducing agent has been identified as the limiting factor on plating efficiency albeit other process factors separately impact on the plating efficiency. Furthermore, bulk precipitation caused by concentration of the reducing agent has been identified as a major problem during electroless plating with hydrazine based plating baths. To ameliorate this problem, a multi step addition of the hydrazine reducer in separate portions has been recommended. 展开更多
关键词 ELECTROLESS PLATING hydrogen PALLADIUM Membranes PLATING EFFICIENCY process FACTORS
下载PDF
Effects of Promoters on the Ignition Process over NiO/Al_2O_3 Catalyst for Autothermal Reforming of Methane to Hydrogen 被引量:1
13
作者 Cai Xiulan Li Guangyan Lin Weiming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第3期56-62,共7页
The catalysts Ni/Al2O3, Ni/ZrO2-CeO2-Al2O3 and Ni/CuO-ZrO2-CeO2-Al2O3 were prepared by the co-precipitation method at a pH of 9 using Na2CO3 as the precipitant. The Ni loading(mass fraction) of the catalysts was 10%. ... The catalysts Ni/Al2O3, Ni/ZrO2-CeO2-Al2O3 and Ni/CuO-ZrO2-CeO2-Al2O3 were prepared by the co-precipitation method at a pH of 9 using Na2CO3 as the precipitant. The Ni loading(mass fraction) of the catalysts was 10%. The ignition process on the catalysts for the autothermal reforming of methane to hydrogen was investigated and the surface properties of the catalysts were characterized by XPS. The results showed that the Ni/Al2O3 catalyst could not ignite the process of autothermal reforming of methane to hydrogen. However, the Ni/CuO-ZrO2-CeO2-Al2O3 catalyst could ignite the process of autothermal reforming of methane to hydrogen at lower reaction temperature(650 ℃) with the conversion of methane reaching 76%. The result of XPS analysis indicated that the promoters could change the binding energy(BE) of Ni2p3/2 obviously. The species of Cu in the Ni/CuO-ZrO2-CeO2-Al2O3 catalyst comprised Cu2 O and Cu2+. The formation of ZrO2-CeO2 solid solution and a large amount of Cu2 O might be the reason leading to good oxygen storage capacity and mobility of lattice oxygen of the Ni/CuO-ZrO2-CeO2-Al2O3 catalyst, which could ignite the process of autothermal reforming of methane to hydrogen at lower reaction temperature. 展开更多
关键词 METHANE autothermal reforming hydrogen production ignition process
下载PDF
Theoretical analysis of hydrogen solubility in direct coal liquefaction solvents 被引量:1
14
作者 Xiaobin Zhang Aoqi Wang +1 位作者 Xingbao Wang Wenying Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期187-197,共11页
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz... The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms. 展开更多
关键词 Direct coal liquefaction Liquefaction solvents process simulation hydrogen solubility
下载PDF
Modeling of propane dehydrogenation combined with chemical looping combustion of hydrogen in a fixed bed reactor
15
作者 Junru Liu Rui Hu +4 位作者 Xinlei Liu Qunfeng Zhang Guanghua Ye Zhijun Sui Xinggui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期165-173,共9页
A redox process combining propane dehydrogenation(PDH)with selective hydrogen combustion(SHC)is proposed,modeled,simulated,and optimized.In this process,PDH and SHC catalysts are physically mixed in a fixed-bed reacto... A redox process combining propane dehydrogenation(PDH)with selective hydrogen combustion(SHC)is proposed,modeled,simulated,and optimized.In this process,PDH and SHC catalysts are physically mixed in a fixed-bed reactor,so that the two reactions proceed simultaneously.The redox process can be up to 177.0%higher in propylene yield than the conventional process where only PDH catalysts are packed in the reactor.The reason is twofold:firstly,SHC reaction consumes hydrogen and then shifts PDH reaction equilibrium towards propylene;secondly,SHC reaction provides much heat to drive the highly endothermic PDH reaction.Considering propylene yield,operating time,and other factors,the preferable operating conditions for the redox process are a feed temperature of 973 K,a feed pressure of 0.1 MPa,and a mole ratio of H_(2) to C_(3)H_(8) of 0.15,and the optimal mass fraction of PDH catalyst is 0.5.This work should provide some useful guidance for the development of redox processes for propane dehydrogenation. 展开更多
关键词 Propane dehydrogenation Selective hydrogen combustion SIMULATION OPTIMIZATION Redox process
下载PDF
Computer Data Processing of the Hydrogen Peroxide Decomposition Reaction
16
作者 余逸男 胡良剑 《Journal of Donghua University(English Edition)》 EI CAS 2003年第2期28-30,共3页
Two methods of computer data processing, linear fitting and nonlinear fitting, are applied to compute the rate constant for hydrogen peroxide decomposition reaction. The results indicate that not only the new methods ... Two methods of computer data processing, linear fitting and nonlinear fitting, are applied to compute the rate constant for hydrogen peroxide decomposition reaction. The results indicate that not only the new methods work with no necessity to measure the final oxygen volume, but also the fitting errors decrease evidently. 展开更多
关键词 data processing curve fitting first order reaction hydrogen peroxide decomposition
下载PDF
A thermodynamic view on the in-situ carbon dioxide reduction by biomass-derived hydrogen during calcium carbonate decomposition
17
作者 Peng Jiang Hao Zhang +5 位作者 Guanhan Zhao Lin Li Tuo Ji Liwen Mu Xiaohua Lu Jiahua Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期231-240,共10页
In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream proces... In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream processes.This study developed a coupled process of biomass chemical looping H2 production and reductive calcination of CaCO_(3).Firstly,a mass and energy balance of the coupled process was established in Aspen Plus.Following this,process optimization and energy integration were implemented to provide optimized operation conditions.Lastly,a life cycle assessment was carried out to assess the carbon footprint of the coupled process.Results reveal that the decomposition temperature of CaCO_(3)in an H_(2)atmosphere can be reduced to 780℃(generally around 900℃),and the conversion of CO_(2)from CaCO_(3)decomposition reached 81.33%with an H2:CO ratio of 2.49 in gaseous products.By optimizing systemic energy through heat integration,an energy efficiency of 86.30%was achieved.Additionally,the carbon footprint analysis revealed that the process with energy integration had a low global warming potential(GWP)of-2.624 kg·kg^(-1)(CO_(2)/CaO).Conclusively,this work performed a systematic analysis of introducing biomass-derived H_(2)into CaCO_(3)calcination and demonstrated the positive role of reductive calcination using green H_(2)in mitigating CO_(2)emissions within the carbonate industry. 展开更多
关键词 BIOMASS CaCO_(3)reductive calcination Chemical looping hydrogen production Carbon footprint Thermodynamics process
下载PDF
Influence of material processing on crystallographic and electrochemical properties of cobalt-free LaNi_(4.95)Sn_(0.3) hydrogen storage alloy
18
作者 魏范松 雷永泉 +3 位作者 陈立新 应窕 葛红卫 吕光烈 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第3期527-531,共5页
The effects of the alloy preparation methods, including the conventional casting, annealing and melt-spinning, on the crystallographic and electrochemical properties of the Co-free LaNi4.95Sn0.3 alloy samples were inv... The effects of the alloy preparation methods, including the conventional casting, annealing and melt-spinning, on the crystallographic and electrochemical properties of the Co-free LaNi4.95Sn0.3 alloy samples were investigated. The results reveal that the as-cast alloy consists of a main phase of CaCu5-type structure and a little second phase (Sn) with noticeable composition segregation and rather poor cycling stability (S200=40.1%). While the annealed and melt-spun alloys are of single CaCu5-type structure phase with a more homogeneous composition and lower cell volume expansion rate (?V/V) on hydriding, and a dramatically improved cyclic stability (S200=73.6%?76.2%), although their activation rate, initial capacity and high-rate dischargeability are lowered somewhat. It is found that the decrease in both the electrocatalytic activity and the hydrogen diffusion rate of the annealed and melt-spun alloys is the main cause for their relatively lower high-rate dischargeability, and the improved cycling stability is due to their lower volume expansion on hydriding and more uniform composition. 展开更多
关键词 贮氢合金 钴基合金 材料处理 晶体结构 电化学性能 结晶 稀土
下载PDF
UV-Based Advanced Oxidation Processes for Antibiotic Resistance Control: Efficiency, Influencing Factors, and Energy Consumption
19
作者 Jiarui Han Wanxin Li +5 位作者 Yun Yang Xuanwei Zhang Siyu Bao Xiangru Zhang Tong Zhang Kenneth Mei Yee Leung 《Engineering》 SCIE EI CAS CSCD 2024年第6期27-39,共13页
Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibi... Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs. 展开更多
关键词 Advanced oxidation processes Ultraviolet/chlorine Ultraviolet/hydrogen peroxide Ultraviolet/persulfate Antibiotic resistant bacteria Antibiotic resistance genes
下载PDF
A preliminary site selection system for underground hydrogen storage in salt caverns and its application in Pingdingshan,China
20
作者 Liangchao Huang Yanli Fang +6 位作者 Zhengmeng Hou Yachen Xie Lin Wu Jiashun Luo Qichen Wang Yilin Guo Wei Sun 《Deep Underground Science and Engineering》 2024年第1期117-128,共12页
Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns... Large‐scale underground hydrogen storage(UHS)provides a promising method for increasing the role of hydrogen in the process of carbon neutrality and energy transition.Of all the existing storage deposits,salt caverns are recognized as ideal sites for pure hydrogen storage.Evaluation and optimization of site selection for hydrogen storage facilities in salt caverns have become significant issues.In this article,the software CiteSpace is used to analyze and filter hot topics in published research.Based on a detailed classification and analysis,a“four‐factor”model for the site selection of salt cavern hydrogen storage is proposed,encompassing the dynamic demands of hydrogen energy,geological,hydrological,and ground factors of salt mines.Subsequently,20 basic indicators for comprehensive suitability grading of the target site were screened using the analytic hierarchy process and expert survey methods were adopted,which provided a preliminary site selection system for salt cavern hydrogen storage.Ultimately,the developed system was applied for the evaluation of salt cavern hydrogen storage sites in the salt mines of Pingdingshan City,Henan Province,thereby confirming its rationality and effectiveness.This research provides a feasible method and theoretical basis for the site selection of UHS in salt caverns in China. 展开更多
关键词 analytic hierarchy process(AHP) evaluation index hydrogen storage salt cavern site selection
下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部