期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
Effect of eccentric and inclined loading on the bearing capacity of strip footing placed on rock mass
1
作者 Shuvankar DAS Debarghya CHAKRABORTY 《Journal of Mountain Science》 SCIE CSCD 2024年第1期292-312,共21页
This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criteri... This paper deals with the bearing capacity determination of strip footing on a rock mass in hilly area by considering the influence of inclined and eccentric loading. Applying the generalized HoekBrown failure criterion, the failure behavior of the rock mass is modeled with the help of the power cone programming in the lower bound finite element limit analysis framework. Using bearing capacity factor(Ns), the change in bearing capacity of the strip footing due to the occurrence of eccentrically inclined loading is presented. The variations of the magnitude of Ns are obtained by examining the effects of the Hoek-Brown rock mass strength parameters(uniaxial compressive strength(sci), disturbance factor(D), rock parameter(mi), and Geological Strength Index(GSI)) in the presence of different magnitudes of eccentricity(e) and inclination angle(λ) with respect to the vertical plane, and presented as design charts. Both the inclined loading modes, i.e., inclination towards the center of strip footing(+λ) and inclination away from the center of strip footing(-λ), are adopted to perform the investigation. In addition, the correlation between the input parameters and the corresponding output is developed by utilizing the artificial neural network(ANN). Additionally, from sensitivity analysis, it is observed that inclination angle(λ) is the most sensitive parameter. For practicing engineers, the obtained design equation and design charts can be beneficial to understand the bearing capacity variation in the existence of eccentrically inclined loading in mountain areas. 展开更多
关键词 eccentric and inclined Power cone programming Rock mass Limit analysis Artificial neural network
下载PDF
The Effect of Core Eccentricity on the Structural Behavior of Concrete Tall Buildings
2
作者 Tarek Anwar Taha Awida 《Journal of Civil Engineering and Architecture》 2024年第3期112-117,共6页
The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were invest... The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were investigated.Three cases of main core locations are studied:centric(A),eccentric by one sixth(B)and one third(C)of building width.The three-dimensional finite element method has been used in conducting structural analysis through ETABS software.Gravity and lateral(wind and seismic)loadings are applied to all building cases.It has been concluded that the core location is the prime parameter governing the structural behavior of tall buildings.Although the first two cases(A,B)have acceptable and similar structural behaviors conforming to code limits,in the third case(C),the building behavior came beyond code limits.The author introduced remedial action by adding two secondary cores in the opposite direction of the main core(C-R)to restore the building behavior to the code limits.The results of this action were satisfactory. 展开更多
关键词 Concrete tall buildings core eccentricity structural behavior GRAVITY WIND seismic loadings
下载PDF
Damage response of conventionally reinforced two-way spanning concrete slab under eccentric impacting drop weight loading 被引量:1
3
作者 S.M.Anas Mehtab Alam Mohd Shariq 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期12-34,共23页
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac... Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section. 展开更多
关键词 RC slabs Impact loading eccentric impacts Concrete models Finite element analysis Damage profiles Stresses Peak acceleration Failure modes Damage dissipation energy CRACKING Drop-weight locations
下载PDF
CFD simulation of hydrodynamics and mixing performance in dual shaft eccentric mixers 被引量:1
4
作者 Songsong Wang Xia Xiong +5 位作者 Peiqiao Liu Qiongzhi Zhang Qian Zhang Changyuan Tao Yundong Wang Zuohua Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期297-309,共13页
This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheologi... This work aims to systematically study hydrodynamics and mixing characteristics of non-Newtonian fluid(carboxyl methyl cellulose,CMC)in dual shaft eccentric mixer.Fluid rheology was described by the power law rheological model.Computational fluid dynamics was employed to simulate the velocity field and shear rate inside the stirred tank.The influence mechanism of the rotational modes,height difference between impellers,impeller eccentricities,and impeller types on the flow field have been well investigated.We studied the performance of different dual-shaft eccentric mixers at the constant power input with its fluid velocity profiles,average shear strain rate,mixing time and mixing energy.The counter-rotation mode shows better mixing performance than co-rotation mode,and greater eccentricity can shorten mixing time on the basis of same stirred condition.To intensify the hydrodynamic interaction between impellers and enhance the overall mixing performance of the dual shaft eccentric mixers,it is critical to have a reasonable combination of impellers and an appropriate spatial position of impellers. 展开更多
关键词 Dual shaft eccentric mixers Non-Newtonian fluid Mixing Laminar flow Computational fluid dynamics
下载PDF
Transition from isotropic to polar state of self-driven eccentric disks
5
作者 王静晗 许天亮 +2 位作者 何景熙 陈康 田文得 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期296-302,共7页
Inspired by the eccentricity design of self-driven disks,we propose a computational model to study the remarkable behavior of this kind of active matter via Langevin dynamics simulations.We pay attention to the effect... Inspired by the eccentricity design of self-driven disks,we propose a computational model to study the remarkable behavior of this kind of active matter via Langevin dynamics simulations.We pay attention to the effect of rotational friction coefficient and rotational noise on the phase behavior.A homogeneous system without rotational noise exhibits a sharp discontinuous transition of orientational order from an isotropic to a polar state with the increase of rotational friction coefficient.When there is rotational noise,the transition becomes continuous.The formation of polar state originates from the effective alignment effect due to the mutual coupling of the positional and orientational degrees of freedom of each disk.The rotational noise could weaken the alignment effect and cause the large spatial density inhomogeneity,while the translational noise homogenizes the system.Our model makes further conceptual progress on how the microscopic interaction among self-driven agents yields effective alignment. 展开更多
关键词 eccentric disk Langevin dynamics polar order alignment effect
下载PDF
Study of beam divergence and thrust vector eccentricity characteristics of the Hall thruster based on dual Faraday probe array planes and its applications
6
作者 陈新伟 赵勇 +11 位作者 田恺 高俊 孙明明 孙新锋 郭宁 张宏 王尚民 冯杰 陈焘 耿海 杨俊泰 史楷 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第5期104-115,共12页
The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thr... The accurate knowledge of the thrust vector eccentricity and beam divergence characteristics of Hall thrusters are of significant engineering value for the beneficial integration and successful application of Hall thrusters on spacecraft.For the characteristics of the plume bipolar diffusion due to the annular discharge channel of the Hall thruster,a Gaussian-fitted method for thrust vector deviation angle and beam divergence of Hall thrusters based on dual Faraday probe array planes was proposed in respect of the Hall thruster beam characteristics.The results show that the ratios of the deviation between the maximum and minimum values of the beam divergence angle and the thrust vector eccentricity angle using a Gaussian fit to the optimized Faraday probe dual plane to the mean value are 1.4%and 11.5%,respectively.The optimized thrust vector eccentricity angle obtained has been substantially improved,by approximately 20%.The beam divergence angle calculated using a Gaussian fitting to the optimized Faraday probe dual plane is approximately identical to the non-optimized one.The beam divergence and thrust vector eccentricity angles for different anode mass flow rates were obtained by averaging the beam divergence and thrust vector eccentricity angles calculated by the dual-plane,Gaussian-fitted ion current density method for different cross-sections.The study not only allows for an immediate and effective tool for determining the design of thrust vector adjustment mechanisms of spacecraft with different power Hall thrusters but also for characterizing the 3D spatial distribution of the Hall thruster plume. 展开更多
关键词 Hall thruster beam divergence thrust vector eccentricity dual Faraday probe array planes
下载PDF
Properties and Applications of the Eccentric-gear Drive 被引量:16
7
作者 ZHAO Yun SUN Liang YU Gaohong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期323-331,共9页
The eccentric-gear can be used for variable speed transmission.But,due to the vibrations caused by variation of backlash in working process,the eccentric-gear is seldom applied in engineering project.There is just a l... The eccentric-gear can be used for variable speed transmission.But,due to the vibrations caused by variation of backlash in working process,the eccentric-gear is seldom applied in engineering project.There is just a little study about the eccentric-gear.And it is necessary to take a further research on eccentric-gear transmission for the applications in the transplanting mechanism of high-speed rice transplanter.The key of this paper is to extend understanding of three following characteristics of this drive:(1) The rotation-center-distance and the geometrical-center-distance of the two meshing eccentric gears are respectively the hypotenuse and the straight edge of a right triangle in a cycle.(2) The geometrical center line of two meshing gears divides the linking-line of the two rotational centers equally.(3) When two times the eccentricity of gear,the rotation-center-distance and the geometrical-center-distance form a right triangle,the optimal value of rotation-center-distance can be determined.In addition,the kinematic analysis,such as the relationship between contact point and midpoint of the linking-line of two gears' rotational centers,transmission ratio between the driving-gear and the driven-gear,contact angle and coordinate of contact point are be made,further the formula for calculation of contact force,flow chart for writing optimization program and curve for analysis of data are also be developed.The relationship between the rotation-center-distance and the geometrical-center-distance,which is determined by three characteristics mentioned above, is a key for the rational design and application of eccentric-gear transmission.Particularly,the presented right triangle property of eccentric gear drive is an important reference for effective analysis of dynamic characteristic of eccentric-gear mechanism and its reliable design. 展开更多
关键词 eccentric gear transmission property variable speed transmission kinematic and dynamic analysis
下载PDF
An Intelligent Harmonic Synthesis Technique for Air-Gap Eccentricity Fault Diagnosis in Induction Motors 被引量:7
8
作者 De Z.Li Wilson Wang Fathy Ismail 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1296-1304,共9页
Induction motors (IMs) are commonly used in various industrial applications. To improve energy con- sumption efficiency, a reliable IM health condition moni- toring system is very useful to detect IM fault at its ea... Induction motors (IMs) are commonly used in various industrial applications. To improve energy con- sumption efficiency, a reliable IM health condition moni- toring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is pro- posed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are syn- thesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air- gap eccentricity diagnosis. The effectiveness of the pro- posed harmonic synthesis technique is examined experi- mentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection. 展开更多
关键词 Air-gap eccentricity Current signal Faultdetection Induction motor
下载PDF
Kinematic Modeling and Characteristic Analysis of Eccentric Conjugate Non-circular Gear & Crank-Rocker & Gears Train Weft Insertion Mechanism 被引量:7
9
作者 陈建能 赵华成 +2 位作者 王英 徐高欢 周鸣 《Journal of Donghua University(English Edition)》 EI CAS 2013年第1期15-20,共6页
A novel weft insertion mechanism named eccentric conjugate non-circular gear & crank-rocker & gears train weft insertion mechanism was proposed in order to better meet the requirements of rapier loom's wef... A novel weft insertion mechanism named eccentric conjugate non-circular gear & crank-rocker & gears train weft insertion mechanism was proposed in order to better meet the requirements of rapier loom's weft insertion mechanism as well as reduce the manufacturing difficulty. Meanwhile, based on the working principle of this mechanism, kinematical mathematic models of this mechanism were established and an aided analysis and simulation software was compiled. The influences of eccentricity ratio, deformation coefficient, and other important parameters on the kinematics characteristics of this mechanism were analyzed by using the software. A group of preferable parameters which could meet the requirements of weft insertion technology were obtained by means of human-computer interactive optimization method. The maximum velocity, maximum acceleration, and variation of acceleration of this mechanism are smaller than those of the conjugate cam weft insertion mechanism applied on TT96 rapier loom under the conditions of the same unilateral total stroke of rapier head and the same rotary speed of loom spindle; meanwhile the other demands of weaving technology can be met by this novel weft insertion mechanism. 展开更多
关键词 weft insertion mechanism eccentric conjugate non-circular gear crank-rocker KINEMATICS
下载PDF
Study on Seepage Characteristics of Composite Bucket Foundation Under Eccentric Load 被引量:4
10
作者 CHEN Qing-shan ZHANG Pu-yang +2 位作者 DING Hong-yan LE Cong-huan XU Yun-long 《China Ocean Engineering》 SCIE EI CSCD 2021年第1期123-134,共12页
Under the effect of eccentric loads,when the suction pressure of the composite bucket foundation is leveled,the seepage failure is very easy to occur.The seepage failure occurrence causes the foundation to settle unev... Under the effect of eccentric loads,when the suction pressure of the composite bucket foundation is leveled,the seepage failure is very easy to occur.The seepage failure occurrence causes the foundation to settle unevenly and impairs the bearing performance.This study uses ABAQUS finite element software to establish a composite bucket foundation model for finite element analysis.The model simulates the seepage of the foundation penetrating process under eccentric load to reveal the induced seepage characteristics of the bucket foundation.The most vulnerable position of seepage failure under the eccentric loading is elucidated.Critical suction formulas for different offset eccentric moment strategies are derived and compared with existing literature formulas.Then the derived formula is supplemented and corrected according to the pressure difference between adjacent cabins.Conclusions can be drawn:(1)Under eccentric loads,the critical suction decreases about 7%−10%.(2)The pressure difference between adjacent cabins impacts significantly on the seepage field,and the critical suction,at most,can be reduced by 17.56%.(3)the offset strategies have little effect on the seepage field.Efficient and appropriate strategies can be selected to meet the requirement of leveling in engineering project. 展开更多
关键词 composite bucket foundation eccentric load seepage failure critical suction
下载PDF
Spinal and supraspinal control of motor function during maximal eccentric muscle contraction:Effects of resistance training 被引量:3
11
作者 Per Aagaard 《Journal of Sport and Health Science》 SCIE 2018年第3期282-293,共12页
Neuromuscular activity is suppressed during maximal eccentric(ECC)muscle contraction in untrained subjects owing to attenuated levels of central activation and reduced spinal motor neuron(MN)excitability indicated by ... Neuromuscular activity is suppressed during maximal eccentric(ECC)muscle contraction in untrained subjects owing to attenuated levels of central activation and reduced spinal motor neuron(MN)excitability indicated by reduced electromyography signal amplitude,diminished evoked H-reflex responses,increased autogenic MN inhibition,and decreased excitability in descending corticospinal motor pathways.Maximum ECC muscle force recorded during maximal voluntary contraction can be increased by superimposed electrical muscle stimulation only in untrained individuals and not in trained strength athletes,indicating that the suppression in MN activation is modifiable by resistance training.In support of this notion,maximum ECC muscle strength can be increased by use of heavy-load resistance training owing to a removed or diminished suppression in neuromuscular activity.Prolonged(weeks to months)of heavy-load resistance training results in increased H-reflex and V-wave responses during maximal ECC muscle actions along with marked gains in maximal ECC muscle strength,indicating increased excitability of spinal MNs,decreased presynaptic and/or postsynaptic MN inhibition,and elevated descending motor drive.Notably,the use of supramaximal ECC resistance training can lead to selectively elevated V-wave responses during maximal ECC contraction,demonstrating that adaptive changes in spinal circuitry function and/or gains in descending motor drive can be achieved during maximal ECC contraction in response to heavy-load resistance training. 展开更多
关键词 CORTICOSPINAL EXCITABILITY eccentric muscle contraction H-REFLEX NEUROMUSCULAR plasticity Resistance training V-wave
下载PDF
Activation reduction following an eccentric contraction impairs torque steadiness in the isometric steady-state 被引量:3
12
作者 Nicole Mazara Adam J.Hess +1 位作者 Jackey Chen Geoffrey A.Power 《Journal of Sport and Health Science》 SCIE 2018年第3期310-317,共8页
Background:The isometric steady-state following active lengthening is associated with greater torque production and lower activation,as measured by electromyographic activity(EMG),in comparison with a purely isometric... Background:The isometric steady-state following active lengthening is associated with greater torque production and lower activation,as measured by electromyographic activity(EMG),in comparison with a purely isometric contraction(ISO)at the same joint angle.This phenomenon is termed residual force enhancement(RFE).While there has been a great deal of research investigating the basic mechanisms of RFE,little work has been performed to understand the everyday relevance of RFE.The purpose of this study was to investigate whether neuromuscular control strategies differ between ISO and RFE by measuring torque steadiness of the human ankle plantar flexors.Methods:Following ISO maximal voluntary contractions in 12 males(25±4 years),an active lengthening contraction was performed at 15°/s over a 30°ankle excursion,ending at the same joint angle as ISO(5°dorsiflexion;RFE).Surface EMG of the tibialis anterior and soleus muscles was recorded during all tasks.Torque steadiness was determined as the standard deviation(SD)and coefficient of variation(CV)of the torque trace in the ISO and RFE condition during activation-matching(20%and 60%integrated EMG)and torque-matching(20%and 60%maximal voluntary contraction)experiments.Two-tailed,paired t tests were used,within subjects,to determine the presence of RFE/activation reduction(AR)and whether there was a difference in torque steadiness between ISO and RFE conditions.Results:During the maximal and submaximal conditions,there was 5%-9%RFE with a 9%-11%AR(p<0.05),respectively,with no difference in antagonist coactivation between RFE and ISO(p>0.05).There were no differences in SD and CV of the torque trace for the 20%and60%activation-matching or the 60%and maximal torque-matching trials in either the RFE or ISO condition(p>0.05).During the 20%torquematching trial,there were~37%higher values for SD and CV in the RFE as compared with the ISO condition(p<0.05).A significant moderate-to-strong negative relationship was identified between the reduction in torque steadiness following active lengthening and the accompanying AR(p<0.05).Conclusion:It appears that while the RFE-associated AR provides some improved neuromuscular economy,this comes at the cost of increased torque fluctuations in the isometric steady-state following active lengthening during submaximal contractions. 展开更多
关键词 eccentric FORCE STEADINESS History dependence Residual FORCE enhancement TREMOR
下载PDF
The fragmentation of D-shaped casing filled with explosive under eccentric initiation 被引量:2
13
作者 Zhi-wei Guo Guang-yan Huang +1 位作者 Wei Zhu Shun-shan Feng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第5期417-421,共5页
With the technical development of new warhead designs and improvised explosive device protection,irregular casing filled with explosive has been paid more attention recently. In this paper, we studied the fragmentatio... With the technical development of new warhead designs and improvised explosive device protection,irregular casing filled with explosive has been paid more attention recently. In this paper, we studied the fragmentation of a type of D-shaped casing, which is a common asymmetric casing in the field of warhead design. Based on the radiograph technique, static explosive experiments were conducted with D-shaped casings under four different eccentric initiation ratios to explore their fragmentation. A numerical model was then established to simulate the dynamic response of D-shaped casing filled with explosive. The results of numerical simulation were found to agree well with the experimental data.According to the results of numerical simulation and experimental data, the dynamic responses of Dshaped casing were analyzed. The results of the current work pave way for the innovative design of new warhead and for further studying the dynamic response of asymmetric casing. 展开更多
关键词 D-shaped CASING eccentric initiation X-ray RADIOGRAPH technique Fragmentation Numerical simulation
下载PDF
Influence of location of large-scale asperity on shear strength of concrete-rock interface under eccentric load 被引量:2
14
作者 Dipen Bista Gabriel Sas +1 位作者 Fredrik Johansson Leif Lia 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期449-460,共12页
The location and geometry of large-scale asperity present at the foundation of concrete gravity dams and buttress dams affect the shear resistance of the concrete-rock interface.However,the parameters describing the f... The location and geometry of large-scale asperity present at the foundation of concrete gravity dams and buttress dams affect the shear resistance of the concrete-rock interface.However,the parameters describing the frictional resistance of the interface usually do not account for these asperities.This could result in an underestimate of the peak shear stre ngth,which leads to significantly conservative design for new dams or unnecessary stability enhancing measures for existing ones.The aim of this work was to investigate the effect of the location of first-order asperity on the peak shear strength of a concrete-rock interface under eccentric load and the model discrepancy associated with the commonly used rigid body methods for calculating the factor of safety(FS)against sliding.For this,a series of direct and eccentric shear tests under constant normal load(CNL)was carried out on concrete-rock samples.The peak shear strengths measured in the tests were compared in terms of asperity location and with the predicted values from analytical rigid body methods.The results showed that the large-scale asperity under eccentric load significantly affected the peak shear strength.Furthermore,unlike the conventional assumption of sliding or shear failure of an asperity in direct shear,under the effect of eccentric shear load,a tensile failure in the rock or in the concrete could occur,resulting in a lower shear strength compared with that of direct shear tests.These results could have important implications for assessment of the FS against sliding failure in the concrete-rock interface. 展开更多
关键词 Shear strength Concrete-rock interface Asperity location eccentric load Model discrepancy Dam foundation
下载PDF
Why are muscles strong, and why do they require little energy in eccentric action? 被引量:2
15
作者 Walter Herzog 《Journal of Sport and Health Science》 SCIE 2018年第3期255-264,共10页
It is well acknowledged that muscles that are elongated while activated(i.e.,eccentric muscle action)are stronger and require less energy(per unit of force)than muscles that are shortening(i.e.,concentric contraction)... It is well acknowledged that muscles that are elongated while activated(i.e.,eccentric muscle action)are stronger and require less energy(per unit of force)than muscles that are shortening(i.e.,concentric contraction)or that remain at a constant length(i.e.,isometric contraction).Although the cross-bridge theory of muscle contraction provides a good explanation for the increase in force in active muscle lengthening,it does not explain the residual increase in force following active lengthening(residual force enhancement),or except with additional assumptions,the reduced metabolic requirement of muscle during and following active stretch.Aside from the cross-bridge theory,2 other primary explanations for the mechanical properties of actively stretched muscles have emerged:(1)the so-called sarcomere length nonuniformity theory and(2)the engagement of a passive structural element theory.In this article,these theories are discussed,and it is shown that the last of these—the engagement of a passive structural element in eccentric muscle action—offers a simple and complete explanation for many hitherto unexplained observations in actively lengthening muscle.Although by no means fully proven,the theory has great appeal for its simplicity and beauty,and even if over time it is shown to be wrong,it nevertheless forms a useful framework for direct hypothesis testing. 展开更多
关键词 CROSS-BRIDGE theory eccentric Force-length relationship Residual FORCE enhancement TITIN
下载PDF
Experimental and Numerical Analysis of Restrained Early Age Cracking based on Electrical Resistivity Using Eccentric Sample 被引量:2
16
作者 Maha A Abusogi 魏小胜 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1472-1480,共9页
Crack potential and hydration processes of the cement pastes were monitored using an upto-date eccentric steel cracking frame(ESCF), associated with the non-contact electrical resistivity apparatus, independently. The... Crack potential and hydration processes of the cement pastes were monitored using an upto-date eccentric steel cracking frame(ESCF), associated with the non-contact electrical resistivity apparatus, independently. The objective of employing the ESCF is to give a new method determining cracks of concrete at early age. The findings indicate that the lowest water-cement ratio paste reveals highest resistivity values, compasses an earlier inflection point and obtained higher stress. The eccentric restrained cracking test exhibited that lower water-cement ratio paste cracked at the earliest time, accordingly confirms cracking tendency is the highest. Tensile strength test and stresses utilizing ABAQUS simulation was performed. The crack initiation ages obtained are consistent with the experimental program results, which indicates that ABAQUS numerical analysis can well be utilized to predict the crack tendency of cement. 展开更多
关键词 eccentric steel cracking frame electrical resistivity cracking time HYDRATION numerical analysis
下载PDF
Biomechanical response of skeletal muscle to eccentric contractions 被引量:2
17
作者 Richard L.Lieber 《Journal of Sport and Health Science》 SCIE 2018年第3期294-309,共16页
The forced lengthening of an activated skeletal muscle has been termed an eccentric contraction(EC).This review highlights the mechanically unique nature of the EC and focuses on the specific disruption of proteins wi... The forced lengthening of an activated skeletal muscle has been termed an eccentric contraction(EC).This review highlights the mechanically unique nature of the EC and focuses on the specific disruption of proteins within the cell known as cytoskeletal proteins.The major intermediate filament cytoskeletal protein,desmin,has been the focus of work in this area because changes to desmin occur within minutes of ECs and because desmin has been shown to play both a mechanical and biologic role in a muscle's response to EC.It is hoped that these types of studies will assist in decreasing the incidence of muscle injury in athletes and facilitating the development of new therapies to treat muscle injuries. 展开更多
关键词 CYTOSKELETON eccentric CONTRACTION Inflammation MUSCLE injury MUSCLE MECHANICS
下载PDF
Slenderness Ratio Effect on the Eccentric Compression Performance of Chamfered Laminated Bamboo Lumber Columns 被引量:2
18
作者 Ke Zhou Haitao Li +6 位作者 Assima Dauletbek Dong Yang Zhenhua Xiong Rodolfo Lorenzo Kun Zhou Ileana Corbi Ottavia Corbi 《Journal of Renewable Materials》 SCIE EI 2022年第1期165-182,共18页
Eccentric compression tests on 15 chamfered laminated bamboo lumber(LBL)columns with a height ranging from 600 to 3000 mm were conducted in order to study the eccentric mechanical performance.The failure of all specim... Eccentric compression tests on 15 chamfered laminated bamboo lumber(LBL)columns with a height ranging from 600 to 3000 mm were conducted in order to study the eccentric mechanical performance.The failure of all specimens was caused by the crack of bamboo fiber in the tensile region.When the ultimate strength was reached,except specimens with a height of 600 mm,all other specimens could bear large deformation,showing good ductility.The lateral displacements of the specimens under eccentric compression were approximately para-bolic in the direction of column height.The ultimate bending moment of LBL columns with different slenderness ratios under compression with the same initial eccentricity was a fixed value.The relationship between ultimate capacity,axial displacement,lateral displacement,and slenderness ratio was analyzed based on test results.It was found that the plane section assumption could be used to express the stress and strain distribution of chamfered LBL columns under eccentric compression.A method for calculating the ultimate bearing capacity was proposed using a constitutive model based on the Ramberg-Osgood relation and the empirical formula for calculating the ultimate capacity was given on the basis of the former research as well as the test results in this paper. 展开更多
关键词 Laminated bamboo lumber COLUMN CHAMFER eccentric compression tangential
下载PDF
Optimization experiment on eccentric lapping of cylindrical rollers 被引量:1
19
作者 Jia Su Julong Yuan +1 位作者 Sen Zhang Binghai Lv 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2018年第3期197-204,共8页
Cylindrical rollers are important elements of bearings,and their machining accuracy and consistency affect the bearing quality.Using a GCr15 cylindrical roller ofФ11×12 as the processing object in this study,the... Cylindrical rollers are important elements of bearings,and their machining accuracy and consistency affect the bearing quality.Using a GCr15 cylindrical roller ofФ11×12 as the processing object in this study,the effects of loading pressure,abrasive concentration,and speed combination on cylindrical roller machining precision were investigated using the orthogonal experimental design method on a double-side eccentric pendulum lapping and polishing machine.The machining parameters of the lapping stage were optimized,and the lapping optimal process parameters were determined by S/N response analysis and analysis of variance(ANOVA).The results show that when the experiment was optimized using loading pressure of 10 N/roller,abrasive concentrationof 20.0 wt%,and rotational speed combination,the material removal rate(MRR)of cylindrical roller reached 0.0896μm/min;the average roughness of the batch decreased from 0.056μm to 0.027μm,51.8%lower than the original batch average roughness,and the deviation decreased from the initial 0.022μm to 0.014μm;the batch average roundness error decreased from 0.47μm to 0.28μm,40.4%lower than the original batch average roundness error,and the deviation decreased from the initial 0.19μm to 0.038μm;and the batch average diameter variation decreased from 4.5μm to about 3.6μm,20%lower than the original batch average diameter variation.The double-side eccentric lapping of cylinder rollers does not only lead to improvement in the surface quality and shape accuracy of rollers,but also improvement in the batch consistency. 展开更多
关键词 Cylindrical ROLLER eccentric PENDULUM type Orthogonal EXPERIMENT LAPPING BATCH consistency
下载PDF
An experiment evaluating how the tiny mass eccentricities in spinstabilized projectiles affect the position of impact points 被引量:2
20
作者 Chuan-lin Chen Hui Xu +2 位作者 Chen-lei Huang Zhong-xin Li Zhi-lin Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期948-960,共13页
This study investigates and quantifies some possible sources affecting the position of impact points of small caliber spin-stabilized projectiles(such as 12.7 mm bullets).A comparative experiment utilizing the control... This study investigates and quantifies some possible sources affecting the position of impact points of small caliber spin-stabilized projectiles(such as 12.7 mm bullets).A comparative experiment utilizing the control variable method was designed to figure out the influence of tiny eccentric centroids on the projectiles.The study critically analyzes data obtained from characteristic parameter measurements and precision trials.It also combines Sobol’s algorithm with an artificial intelligence algorithmdAdaptive Neuro-Fuzzy Inference Systems(ANFIS)ein order to conduct global sensitivity analysis and determine which parameters were most influential.The results indicate that the impact points of projectiles with an entry angle of 0°deflected to the left to that of projectiles with an entry angle of 90°.The difference of the mean coordinates of impact points was about 12.61 cm at a target range of 200 m.Variance analysis indicated that the entry angleei.e.the initial position of mass eccentricityehad a notable influence.After global sensitivity analysis,the significance of the effect of mass eccentricity was confirmed again and the most influential factors were determined to be the axial moment and transverse moment of inertia(Izz Iyy),the mass of a projectile(m),the distance between nose and center of mass along the symmetry axis for a projectile(Lm),and the eccentric distance of the centroid(Lr).The results imply that the control scheme by means of modifying mass center(moving mass or mass eccentricity)is promising for designing small-caliber spin-stabilized projectiles. 展开更多
关键词 Tiny mass eccentricity Small-caliber projectile BULLET Artificial intelligence algorithm Global sensitivity analyses Precision trials ANFIS Sobol’s algorithm
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部