期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Seismic responses and resilience of novel SMA-based self-centring eccentrically braced frames under near-fault ground motions
1
作者 Zhi-Peng CHEN Songye ZHU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第8期962-975,共14页
In this paper,the seismic responses and resilience of a novel K-type superelastic shape memory alloy(SMA)self-centring(SC)eccentrically braced frame(EBF)are investigated.The simulation models of the SMA-based SC-EBF a... In this paper,the seismic responses and resilience of a novel K-type superelastic shape memory alloy(SMA)self-centring(SC)eccentrically braced frame(EBF)are investigated.The simulation models of the SMA-based SC-EBF and a corresponding equal-stiffness traditional EBF counterpart are first established based on some existing tests.Then twenty-four near-fault ground motions are used to examine the seismic responses of both EBFs under design basis earthquake(DBE)and maximum considered earthquake(MCE)levels.Structural fragility and loss analyses are subsequently conducted through incremental dynamic analyses(IDA),and the resilience of the two EBFs are eventually estimated.The resilience assessment basically follows the framework proposed by Federal Emergency and Management Agency(FEMA)with the additional consideration of the maximum residual inter-storey drift ratio(MRIDR).The novel SMA-based SC-EBF shows a much better resilience in the study and represents a promising attractive alternative for future applications. 展开更多
关键词 shape memory alloy eccentrically braced frame self-centring FRAGILITY loss function RESILIENCE
原文传递
Numerical study of the cyclic load behavior of AISI 316L stainless steel shear links for seismic fuse device
2
作者 Ruipeng LI Yunfeng ZHANG Le-Wei TONG 《Frontiers of Structural and Civil Engineering》 CSCD 2014年第4期414-426,共13页
This paper presents the results of nonlinear finite element analyses conducted on stainless steel shear links. Stainless steels are attractive materials for seismic fuse device especially for corrosion-aware environme... This paper presents the results of nonlinear finite element analyses conducted on stainless steel shear links. Stainless steels are attractive materials for seismic fuse device especially for corrosion-aware environment such as coastal regions because they are highly corrosion resistant, have good ductility and toughness properties in combination with low maintenance requirements. This paper discusses the promising use ofAISI 316L stainless steel for shear links as seismic fuse devices. Hysteresis behaviors of four stainless steel shear link specimens under reversed cyclic loading were examined to assess their ultimate strength, plastic rotation and failure modes. The nonlinear finite element analysis results show that shear links made of AISI 316L stainless steel exhibit a high level of ductility. However, it is also found that because of large over-strength ratio associated with its strain hardening process, mixed shear and flexural failure modes were observed in stainless steel shear links compared with conventional steel shear links with the same length ratio. This raises the issue that proper design requirements such as length ratio, element compactness and stiffener spacing need to be determined to ensure the full development of the overall plastic rotation of the stainless steel shear links. 展开更多
关键词 hysteretic damper eccentrically braced frame energy dissipation SEISMIC stainless steel shear link
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部