The integration of entire supply and value chain into a closed loop network is gaining more importance in recent times in order to ensure a business to be economically and environmentally sustainable with the changing...The integration of entire supply and value chain into a closed loop network is gaining more importance in recent times in order to ensure a business to be economically and environmentally sustainable with the changing trends in business and social environments, growing environmental consciousness in the society and government legislations to protect the environment as well as the business. In this context, this paper considers a multi-echelon closed loop supply chain network design with forward and reverse logistics components. An attempt has been made to develop a mixed integer non-linear programming model for this problem with different costs so that the sum of the total cost is minimized subject to different constraints pertaining to capacities of the entities of the system, demands of first customers and second customers. A generalized model is presented and then its application is illustrated using an example problem by solving the model using LINGO14. This model forms as a tool to compare future meta-heuristics to check the closeness of their solutions with corresponding optimal solutions.展开更多
文摘The integration of entire supply and value chain into a closed loop network is gaining more importance in recent times in order to ensure a business to be economically and environmentally sustainable with the changing trends in business and social environments, growing environmental consciousness in the society and government legislations to protect the environment as well as the business. In this context, this paper considers a multi-echelon closed loop supply chain network design with forward and reverse logistics components. An attempt has been made to develop a mixed integer non-linear programming model for this problem with different costs so that the sum of the total cost is minimized subject to different constraints pertaining to capacities of the entities of the system, demands of first customers and second customers. A generalized model is presented and then its application is illustrated using an example problem by solving the model using LINGO14. This model forms as a tool to compare future meta-heuristics to check the closeness of their solutions with corresponding optimal solutions.