期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Shuram-Wonoka carbon isotope excursion:Ediacaran revolution in the world ocean's meridional overturning circulation 被引量:3
1
作者 George E.Williams Phillip W.Schmidt 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第2期391-402,共12页
The late Ediacaran Shuram-Wonoka excursion, with δ^(13)C_(carb) values as low as-12‰(PDB) in marineshelf deposits and spanning up to 10 Myr, is the deepest and most protracted δ^(13)C_(carb) negative anomaly recogn... The late Ediacaran Shuram-Wonoka excursion, with δ^(13)C_(carb) values as low as-12‰(PDB) in marineshelf deposits and spanning up to 10 Myr, is the deepest and most protracted δ^(13)C_(carb) negative anomaly recognised in Earth history. The excursion formed on at least four continents in low(≤32°) palaeolatitudes, and in China is associated with a major phosphogenic event. Global and intrabasinal correlation, magnetostratigraphy, isotope conglomerate tests and further geochemical data are consistent with a primary or syn-depositional origin for the excursion. Continental-margin phosphorites are generated by oceanic upwelling driven by surface winds, and δ^(13)C_(carb) negative anomalies are explicable by oceanic upwelling of 13 C-depleted deep oceanic waters, arguing that a feature common to these exceptional Ediacaran events was unprecedented perturbation of the world ocean. These events occurred during the transition from an alien Proterozoic world marked by low-palaeolatitude glaciation near sea level and strong seasonality to the familiar Phanerozoic Earth with circum-polar glaciation and temperate climate, suggesting that the Shuram-Wonoka excursion is related to this profound change in Earth's climate system. Of various hypotheses for Proterozoic low-palaeolatitude glaciation, only the high obliquity(>54°) hypothesis, which posits secular decrease in obliquity to near the present-day value(23.5°) during the Ediacaran, predicts an unparalleled revolution in the Ediacaran world ocean. The obliquity controls the sense of the world ocean's meridional overturning circulation, which today is driven by the sinking of cold, dense water at the poles and upwelling driven by zonal surface winds.When the decreasing obliquity passed the critical value of 54° during the Ediacaran the meridional temperature gradient reversed, with the equator becoming warmer than the poles and Hadley lowlatitude(<30°-35°) atmospheric zonal circulation reversing. This reversal of the temperature gradient is unique to the Ediacaran Period and caused reversal of the oceanic meridional overturning circulation,with upwelling of anoxic, 13 C-depleted deep oceanic waters producing a deeply negative and protractedδ^(13)C_(carb) signature on late Ediacaran marine-shelf deposits. 展开更多
关键词 EDIACARAN Shuram-Wonoka carbon isotope excursion Oceanic meridional circulation Atmospheric circulation Proterozoic paleoclimate Obliquity of the ecliptic
下载PDF
The Effect of Tide on the Global Climate Change 被引量:7
2
作者 YANG Xuexiang, CHEN Zhen and CHEN Dianyou( College of Ceo - exploration Science and Technology, Jilin University, Changchun 130026, P. R. China)Qiao Qiyuan(National Astronomical Observatory, Chinese Academy of Science, Beijing 100012, P. R. China) 《Global Geology》 2002年第1期23-30,共8页
The differential rotation between the solid and fluid spheres caused by tidal force could explain the 1500 to 1800-year cycle of the world's temperature. Strong tide increases the vertical and horizontal mixing of... The differential rotation between the solid and fluid spheres caused by tidal force could explain the 1500 to 1800-year cycle of the world's temperature. Strong tide increases the vertical and horizontal mixing of water in the oceans, drawing the cold Pacific water from the depths to the surface and the warm water from the west to the east, where it cools or warms the atmosphere above, absorbs or releases CO2 to decrease or increase greenhouse effect and to make La Nina or El Nino occur in the global. The moon's declination and obliquity of the ecliptic affect the tidal intensity. The exchange of tidal energy and tide-generating force caused by the sun, moon and major planets makes the earth's layers rotate in different speeds. The differenti-al rotation between solid and fluid of the earth is the basic reason for El Nino and global climate change. 展开更多
关键词 Tide-generating force Differential rotation EL Nino Moon's declination OBLIQUITY of the ecliptic
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部