期刊文献+
共找到3,167篇文章
< 1 2 159 >
每页显示 20 50 100
The 3D simulation and optimized management model of groundwater systems based on eco-environmental water demand
1
作者 Zhang Guang-xin Deng Wei He Yan 《Journal of Geographical Sciences》 SCIE CSCD 2002年第2期103-112,共10页
Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item ... Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained. 展开更多
关键词 groundwater systems eco-environmental water demand three-dimensional simulation model optimized management model ecologically fragile area
下载PDF
Eco-environmental water demands for the Baiyangdian Wetland 被引量:2
2
作者 Ping ZHONG Zhifeng YANG +1 位作者 Baoshan CUI Jingling LIU 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2008年第1期73-80,共8页
In recent years,the hydrological characters of Baiyangdian Wetland have changed greatly,which,in turn,influence the biotic component,the structure and function of the wetland ecosystem.In order to determine the demand... In recent years,the hydrological characters of Baiyangdian Wetland have changed greatly,which,in turn,influence the biotic component,the structure and function of the wetland ecosystem.In order to determine the demands for water resources of ecological wetland system,a method of ecological water level coefficient was suggested to calculate the water resources demands for wetland environment use.This research showed that the minimum coefficient is 0.94 and the optimal coefficient is more than 1.10.According to these two coefficients,the ecological water level and water quantity can be estimated.The results indicate that the amount of the minimal and optimal eco-environmental water require-ments are 0.87×10^(8) and 2.78×10^(8)m^(3) in average monthly,respectively,with the maximum eco-environmental water requirement in summer and the minimum in winter.The annual change of eco-environment water demand is in accord-ing with the climate change and hydrological characters.The method of ecological water level emphasizes that wetland ecosystem adapts to the hydrological conditions,so it can be used in practice well. 展开更多
关键词 ecological water level eco-environmental water requirements ecological water level coefficient Baiyangdian Wetland
原文传递
Water resources optimization and eco-environmental protection in Qaidam Basin
3
作者 FANG Chuang-lin~1, BAO Chao~2 (1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China 2. Dept. of Geography, Peking University, Beijing 100871, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第2期231-238,共8页
In order to realize sustainable development of the arid area of Northwest China, rational water resources exploitation and optimization are primary prerequisites. Based on the essential principle of sustainable develo... In order to realize sustainable development of the arid area of Northwest China, rational water resources exploitation and optimization are primary prerequisites. Based on the essential principle of sustainable development, this paper puts forward a general idea on water resources optimization and eco-environmental protection in Qaidam Basin, and identifies the competitive multiple targets of water resources optimization. By some qualitative methods such as Input-output Model & AHP Model and some quantitative methods such as System Dynamics Model & Produce Function Model, some standard plans of water resources optimization come into being. According to the Multiple Targets Decision by the Closest Value Model, the best plan of water resources optimization, eco-environmental protection and sustainable development in Qaidam Basin is finally decided. 展开更多
关键词 water resources optimization Multiple Targets Decision by the Closest Value Model eco-environmental protection Qaidam Basin
下载PDF
RESEARCH ON MUNICIPAL WATER DEMANDS FORECAST 被引量:3
4
作者 赵新华 田一梅 陈春芳 《Transactions of Tianjin University》 EI CAS 2001年第1期21-25,共5页
Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand du... Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand during holidays and under unexpected events is also presented.Meanwhile,a computer software is developed.Through actual application,this method performs well and has high accuracy,so it can be applied to the daily operation of a water distribution system and lay a foundation for on-line optimal operation. 展开更多
关键词 water supply short-term demand forecast time-series analysis
下载PDF
Balance of Water Supply-demand in Paddy Fields in Hilly Regions in Sichuan Province
5
作者 张鸿 姜心禄 +1 位作者 樊红柱 郑家国 《Agricultural Science & Technology》 CAS 2012年第7期1489-1492,共4页
[Objective] The aim was to study the effects of water supply and consumption on water saving and drought resistance. [Method] Controlling field experiment was conducted to explore water balance between supply and dema... [Objective] The aim was to study the effects of water supply and consumption on water saving and drought resistance. [Method] Controlling field experiment was conducted to explore water balance between supply and demand in paddy fields in hilly regions in Sichuan Province. [Result] Rainfall in hilly areas was 3 611.10 m3/hm2; water for irrigation was 6 299.25 m3/hm2; evapotranspiration of rice was 6 424.95 m3/hm2; deep leakage was 2 459.55 m3/hm2; overflowing amount was 1 026.00 m3/hm2. In addition, water consumption totaled 8 884.50 m3/hm2 during rice production; water use was 0.99 kg/m3 and use efficiency of irrigated water was 1.40 kg/m3. [Conclusion] Water supply and consumption should be further organized to save water and fight against drought in hilly areas in Sichuan Province. 展开更多
关键词 RICE water balance between supply and demand Sichuan Province Hilly areas
下载PDF
The Estimation of Water Supply and Demand in Hotan Oasis
6
作者 杨依天 杨佳禾 魏胜利 《Agricultural Science & Technology》 CAS 2016年第3期742-746,750,共6页
[Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasi... [Objective] The purpose of this study is to estimate water supply and demand, which can provide a basis for how to allocate rationally water resources in Hotan Oasis. [Method] The water supply and demand in Hotan Oasis in the next15 years were calculated according to water-soil balance. [Result] When the runoff of Hotan River is at a probability of 50%(P=50 for short), the total water resource is 50.57×10^8m^3, and there is only 33.13×10^8m^3available for social and economics,but there would be a need of 33.44×10^8and 36.06×10^8m^3, and the water shortage would be 1.31 ×10^8and 2.93 ×10^8m^3in 2020 and 2030 respectively. When P =75,the total water resource is 44.30×10^8m^3, there is only 29.39×10^8m^3water available for social and economics. However, there would be a need of 31.43 ×10^8and33.11×10^8m^3, and the water shortage would be 2.04×10^8and 3.72×10^8m^3in 2020 and 2030, respectively. [Conclusion] The problem of water shortage would be serious over the next 15 years, and the fragile ecosystem would be destroyed dramatically with the large-scale land reclamation against natural laws. Hence, the effective policies and measures should be taken timely to prohibit reclamation and to cope with ongoing water shortage, based on the water supply and demand estimation under the background of climate change. 展开更多
关键词 ESTIMATION water-soil balance water supply and demand Hotan Oasis
下载PDF
Exploration of Water and Soil Conservation's Function in Construction of Eco-environment 被引量:2
7
作者 张丰良 冯兴平 《Agricultural Science & Technology》 CAS 2015年第7期1544-1551,共8页
Eco-environment lays foundation for human existence and development, and social and economy evolvement. Therefore, it is a fundamental principle to pro- tact and construct eco-environment and achieve sustainable devel... Eco-environment lays foundation for human existence and development, and social and economy evolvement. Therefore, it is a fundamental principle to pro- tact and construct eco-environment and achieve sustainable development. With ur- ban development, and destruction on natural environment, however, the issue of water and soil losses has become a serious problem, affecting people's life and production. The research, therefore, explored the role of water and soil conservation in ecological civilization construction, including bomprehensive treatment of water storage and sand reduction, improving agricultural structure and advancing rural econ- omy, relieving the conflict between supply and demand of water resources, improv- ing eco-environment in mountainous regions and accelerating eco-construction. 展开更多
关键词 water and soil conservation eco-environment Fundamental national policy
下载PDF
Ecological water demand of natural vegetation in the lower Tarim River 被引量:23
8
作者 YE Zhaoxia CHEN Yaning LI Weihong 《Journal of Geographical Sciences》 SCIE CSCD 2010年第2期261-272,共12页
We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells acro... We have appraised the relationships between soil moisture, groundwater depth, and plant species diversity in the lower reaches of the Tarim River in western China, by analyzing field data from 25 monitoring wells across eight study sites and 25 permanent vegetation survey plots. It is noted that groundwater depth, soil moisture and plant species diversity are closely related. It has been proven that the critical phreatic water depth is five meters in the lower reaches of the Tarim River. We acquired the mean phreatic evaporation of different groundwater levels every month by averaging the two results of phreatic evaporation using the Qunk and Averyanov formulas. Based on different vegetation types and acreage with different groundwater depth, the total ecological water demand (EWD) of natural vegetation in 2005 was 2.4×10^8 m^3 in the lower reaches of the Tarim River. Analyzing the monthly EWD, we found that the EWD in the growth season (from April to September) is 81% of the year's total EWD. The EWD in May, June and July was 47% of the year's total EWD, which indicates the best time for dispensing artificial water. This research aims at realizing the sustainable development of water resources and provides a scientific basis for water resource management and sound collocation of the Tarim River Basin. 展开更多
关键词 ecological water demand natural vegetation eco-hydrological processes Tarim River
下载PDF
Ecological and environmental water demand of the lakes in the Haihe-Luanhe Basin of North China 被引量:18
9
作者 LiuJL YongZF 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第2期234-238,共5页
The purpose of this paper is to present a brief concept of the ecological and environmental water demand of lake. The present situation and affecting factors of lake ecological system in the Haihe\|Luanhe Basin of Nor... The purpose of this paper is to present a brief concept of the ecological and environmental water demand of lake. The present situation and affecting factors of lake ecological system in the Haihe\|Luanhe Basin of North China was analyzed. The calculating method of the ecological and environmental water demand of the lake basis on the water body and the calculating method of the ecological and environmental water demand of the lake basis on the aquatic ecosystem, wetland and vegetation were compared and discussed. As the examples of Baiyangdian Lake and Beidagang Lake in Haihe\|Luanhe river basin, the ecological and environmental water demand of the two lakes was calculated to be 27×10\+8m\+3. It is 6.75 times to the water demand according to the calculating method of the ecological and environmental water demand of the lake basis on the water body. The research result indicated: (1) The calculating methods of the ecological and environmental water demand of the lake basis on the aquatic ecosystem should be better than only basis on the water body of lake. (2) The data, such as area of the vegetation kind around and in the lake, the vegetation coefficient, the evaporating amount of the vegetation and the vegetation water demand itself around and in the lake are lack and urgent need. Some suggestions for controlling and regulating the water resource of the lake in North China were proposed. 展开更多
关键词 eco\|environment water demand LAKE the Haihe\|Luanhe Basin
下载PDF
Methodology to determine regional water demand for instream flow and its application in the Yellow River Basin 被引量:7
10
作者 ZHANG Yuan YANG Zhi-feng Wang Xi-qin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第5期1031-1039,共9页
In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a conce... In order to realistically reflect the difference between regional water demand for instream flow and river ecological water demand as well as to resolve the problem that water demand may be counted repeatedly, a concept of regional water demand for minimum instream flow have been developed. The concept was used in the process of determining river functions and calculating ecological water demand for a river. The Yellow River watershed was used to validate the calculation methodology for regional water demand. CaIculation results indicate that there are significant differences in water demands among the different regions. The regional water demand at the downstream of the Yellow River is the largest about 14.893 × 10^9 m^3/a. The regional water demand of upstream, Lanzhou-Hekou section is the smallest about -5.012 × 10^9 m^3/a. The total ecological water demand of the Yellow River Basin is 23.06 × 10^9 m^3/a, about the 39% of surface water resources of the water resources should not exceed 61% in the Yellow River Basin. Yellow River Basin. That means the maximum available surface The regional river ecological water demands at the Lower Section of the Yellow River and Longyangxia-Lanzhou Section exceed the surface water resources produced in its region and need to be supplemented from other regions through the water rational planning of watershed water resources. These results provides technical basis for rational plan of water resources of the Yellow River Basin. 展开更多
关键词 regional water demand instream flow environmental flow METHODOLOGY the Yellow River Basin
下载PDF
Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China 被引量:11
11
作者 JI Xi-bin KANG Er-si +3 位作者 CHEN Ren-sheng ZHAO Wen-zhi XlAO Sheng-chun JIN Bo-wen 《Agricultural Sciences in China》 CAS CSCD 2006年第2期130-140,共11页
Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance o... Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system. 展开更多
关键词 middle reaches of Heihe River irrigation region water resources supply and demand balance evaluation of the security of water resources
下载PDF
Ecological water demand:the case of the slope systems in the East Liaohe River Basin 被引量:4
12
作者 YANDenghua HEYan +1 位作者 DENGWei HOUYoushun 《Journal of Geographical Sciences》 SCIE CSCD 2003年第4期400-407,共8页
The ecological water demand (EWD) is the least water amount required to maintain the structure and the function of the special eco-system and the temporal scale of a study on the EWD must be a season's time. Based... The ecological water demand (EWD) is the least water amount required to maintain the structure and the function of the special eco-system and the temporal scale of a study on the EWD must be a season's time. Based on GIS and RS with the source information of hydrological data of 46 hydrological gauges covering 52 years and the digital images of Landsat TM in 1986, 1996 and 2000, the landscape patterns, precipitation and runoff in the East Liaohe River Basin were analyzed. With the result of the above analysis, the spatial and temporal changes of the ecological water demand in the slope systems (EWDSS) of the East Liaohe River Basin (ELRB) were derived. Landscapes in the ELRB are dispersed and strongly disturbed by human actions. The hydrological regime in ELRB has distinct spatial variations. The average annual EWDSS in the ELRB is 504.72 mm (324.08-618.89 mm), and the average EWDSS in the growth season (from May to September) is 88.29% of the year's total EWDSS .The ultimate guaranteeing ratio of the EWDSS in ELRB is 90%. The scarce EWDSS area in the whole year and in the growth season are 60.47% and 74.01% of the entire basin respectively. The trend of scarce EWDSS area is most serious according to the quantity and area of scarce EWDSS regions. 展开更多
关键词 East Liaohe River Basin slope system ecological demand water GIS & RS
下载PDF
THE BALANCE BETWEEN SUPPLY AND DEMAND OF WATER RESOURCES AND THE WATER-SAVING POTENTIAL FOR AGRICULTURE IN THE HEXI CORRIDOR 被引量:9
13
作者 GAOQian-zhao DUHu-lin 《Chinese Geographical Science》 SCIE CSCD 2002年第1期23-29,共7页
The Hexi Corridor is an important base of agriculture development inNorthwest China. According to recent statistics, there are 65. 94 x 10~8m^3 of water resourcesavailable in the Hexi Corridor. At present, net consump... The Hexi Corridor is an important base of agriculture development inNorthwest China. According to recent statistics, there are 65. 94 x 10~8m^3 of water resourcesavailable in the Hexi Corridor. At present, net consumption in development and utilization is 43. 33x 10~8m^3. Water supply and demand reach a balance on the recent level of production, but loss ofevaporation and evapotranspiration is as much as 25. 69 x 1010~8m^3. So net use efficiency of waterresources is 59% Based on analyzing balance between water and land considering ecologicalenvironment at present, there exists the serious water shortage in the Shiyang River system whereirrigation lands have overloaded. There is a comparative balance between supply and demand of waterresource in the Heihe River system; and the Sule River system has some surplus water to extendirrigation land. Use of agriculture water accounts for 83. 3% and ecological forest and grass for 6.9% . The Hexi Corridor still has a great potential for water saving in agriculture production.Water-saving efficiency of irrigation is about 10% by using such traditional technologies as furrowand border-dike irrigation and small check irrigation, and water-saving with plastic film cover andtechniques of advanced sprinkler and drip/micro irrigation etc. can save more than 60% of irrigatedwater. Incremental irrigation area for water-saving potential in the Hexi Corridor has beenestimated as 56% - 197% to original irrigation area. So the second water sources can be developedfrom water saving agriculture in the Hexi Corridor under Development of the Western Part of China inlarge scale. This potential can be realized step by step through developing the water-savingmeasures, improving the ecological condition of oasis agriculture, and optimizing allocation ofwater resources in three river systems. 展开更多
关键词 water resources balance between supply and demand water-saving potential ofagriculture hexi corridor
下载PDF
Spatial matching and flow in supply and demand of water provision services: A case study in Xiangjiang River Basin 被引量:4
14
作者 DENG Chu-xiong ZHU Da-mei +1 位作者 LIU Yao-jun LI Zhong-wu 《Journal of Mountain Science》 SCIE CSCD 2022年第1期228-240,共13页
Global climate change and increased human consumption have aggravated the uneven spatiotemporal distribution of watershed water resources, affecting the water provision supply and demand state. However, this problem h... Global climate change and increased human consumption have aggravated the uneven spatiotemporal distribution of watershed water resources, affecting the water provision supply and demand state. However, this problem has often been ignored. The present study used the Xiangjiang River basin(XRB) as the study area, and the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST) model, demand quantification model,supply–demand ratio, and water flow formula were applied to explore the spatial heterogeneity, flow, and equilibrium between water supply and demand. The results demonstrated significant spatial heterogeneity in the upstream, midstream, and downstream regions.The areas of water shortage were mainly located the downstream of the Changsha–Zhuzhou–Xiangtan urban agglomeration, and the Hengyang basin was the most scarcity area. Affected by terrain gradients and human needs, water flow varied from-16.33 × 10^(8) m^(3) to 13.69 × 10^(8) m^(3)from the upstream to the downstream area, which provided a possibility to reduce spatial heterogeneity. In the future, measures such as strengthening water resource system control,sponge city construction, and dynamic monitoring technology should be taken to balance the supply and demand of water in different river sections of the basin. This study can provide references for regulating water resources allocation in different reaches of the basin. 展开更多
关键词 water provision services Supply and demand Spatiotemporal dislocation water flow water management and saving policy Xiangjiang River basin
下载PDF
A preliminary study on ecological waterdemand estimation in the arid region─A case in the Qaidam Basin 被引量:3
15
作者 ZHANG Xing-you SHEN Yuan-cun (Institute of Geography, Chinese Academy of Sciences, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 1999年第2期155-162,共8页
The paper emphasized the relationship between environment and water taking ecological demand water (EWD) in the Qaidam Basin─an inner basin in northwestern China, as a key issue to discuss based on landscape umpping.... The paper emphasized the relationship between environment and water taking ecological demand water (EWD) in the Qaidam Basin─an inner basin in northwestern China, as a key issue to discuss based on landscape umpping. First of all. the spatial heterogeneity of ecosystem can be reflected well by landscape pattern; secondly, landscape patterns adjust closely with environmental changes; finally, water condition is the key ecological factor for landscape pattern in the arid region.The landsat TM image of 1:100,000 on September 22, 1996 were calibrated with topographical map of the same scale, and then landscape patterns were interpreted and mapped. As a result the Qaidam Basin could be divided into 14 main types, including 67 subtypes. Concerning the characteristics of the EWD of each sub-type, the EWD in the whole basin could be estimated according to the following formula:V= (E - P ) * S = r (KEo - P ) * S Where, V is the ecological demand for Water (m3), E is the evaporation potential on terrestrial surface (m). P is the precipitation in landscape unit (m), S is the area of landscape unit (m2), Eo is the evaporation potential on water surface (m), K is the evaporation coefficient, and r is the coverage.According to the results, the ecological demand for water of desert vegetation is about 9,65×108m3, while it is about 24.48×108m3 for the lake in the inner basin. Therefore, the total EWD occupies approximately 65.7% of the total water resources in the basin. In conclusion, the quantitative method based on landscape ecological mapping is feasible, which attentively transfers the 'point'information to the 'area'. However, the preliminary results are expccted to improve by further field delta. 展开更多
关键词 the Qaidam Basin ecological water demand landscape pattern
下载PDF
Cotton's Water Demand and Water-Saving Benefits under Drip Irrigation with Plastic Film Mulch 被引量:2
16
作者 Yingyu YAN Juyan LI 《Asian Agricultural Research》 2016年第4期32-36,41,共6页
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi... The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%. 展开更多
关键词 Cotton’s water demand Cotton’s water consumption water-SAVING BENEFITS DRIP irrigation with PLASTIC film MULCH
下载PDF
System Dynamics Approach to Urban Water Demand Forecasting—A Case Study of Tianjin 被引量:3
17
作者 张宏伟 张雪花 张宝安 《Transactions of Tianjin University》 EI CAS 2009年第1期70-74,共5页
A system dynamics approach to urban water demand forecasting was developed based on the analysis of urban water resources system, which was characterized by multi-feedback and nonlinear interactions among sys-tem elem... A system dynamics approach to urban water demand forecasting was developed based on the analysis of urban water resources system, which was characterized by multi-feedback and nonlinear interactions among sys-tem elements. As an example, Tianjin water resources system dynamic model was set up to forecast water resources demand of the planning years. The practical verification showed that the relative error was lower than 10%. Fur-thermore, through the comparison and analysis of the simulation results under different development modes pre-sented in this paper, the forecasting results of the water resources demand of Tianjin was achieved based on sustain-able utilization strategy of water resources. 展开更多
关键词 system dynamics water resources demand forecasting NONLINEARITY
下载PDF
Analysis on the situation and countermeasures of water resources supply and demand in the cities of small and medium-sized river basins along southeast coast of China-taking Xiamen City as an example 被引量:2
18
作者 Chun-lei Liu Jian-hua Zheng +3 位作者 Zheng-hong Li Ya-song Li Qi-chen Hao Jian-feng Li 《Journal of Groundwater Science and Engineering》 2021年第4期350-358,共9页
The small and medium-sized river basins along southeast coast of China hold comparatively abundant water resources.However,the rapid resources urbanization in recent years has produced a series of water problems such ... The small and medium-sized river basins along southeast coast of China hold comparatively abundant water resources.However,the rapid resources urbanization in recent years has produced a series of water problems such as deterioration of river water quality,water shortage and exacerbated floods,which have constrained urban economic development.By applying the principle of triple supply-demand equilibrium,this paper focuses on the estimation of levels of water supply and demand in 2030 at different guarantee probabilities,with a case study of Xiamen city.The results show that water shortage and inefficient utilization are main problems in the city,as the future water supply looks daunting,and a water shortage may hit nearly 2×10^(8)m^(3)in an extraordinarily dry year.Based on current water supply-demand gap and its trend,this paper proposes countermeasures and suggestions for developing and utilizing groundwater resources and improving the utilization rate of water resources,which can supply as a reference for other southeast middle-to-small-sized basin cities in terms of sustainable water resources and water environment protection. 展开更多
关键词 Xiamen City water resources Triple equilibrium Probability Supply and demand forecast
下载PDF
Irrigation Water Demand Model as a Comparative Tool for Assessing Effects of Land Use Changes for Agricultural Crops in Fraser Valley, Canada 被引量:2
19
作者 Skylar Kylstra Autumn D. Watkinson +1 位作者 Lewis Fausak Leslie M. Lavkulich 《Agricultural Sciences》 2021年第8期888-906,共19页
Available water for human needs and agriculture is a growing global concern. Agriculture uses approximately 70% of global freshwater, mainly for irrigation. The Lower Fraser Valley (LFV), British Columbia, is one of t... Available water for human needs and agriculture is a growing global concern. Agriculture uses approximately 70% of global freshwater, mainly for irrigation. The Lower Fraser Valley (LFV), British Columbia, is one of the most productive agricultural regions in Canada, supporting livestock production and a wide variety of crops. Water scarcity is a growing concern that threatens the long-term productivity, sustainability, and economic viability of the LFV’s agriculture. We used the BC Agriculture Water Demand Model as a tool to determine how crop choice, irrigation system, and land-use changes can affect predicted water requirements under these different conditions, which can aid stakeholders to formulate better management decisions. We conducted a comparative assessment of the irrigation water demand of seven major commercial crops, by distinct soil management groups, at nineteen representative sites, that use both sprinkler vs drip irrigation. Drip irrigation was consistently more water-efficient than sprinkler irrigation for all crops. Of the major commercial crops assessed, raspberries were the most efficient in irrigation water demand, while forage and pasture had the highest calculated irrigation water demand. Significant reductions in total irrigation water demand (up to 57%) can be made by switching irrigation systems and/or crops. This assessment can aid LFV growers in their land-use choices and could contribute to the selection of water management decisions and agricultural policies. 展开更多
关键词 Drip Irrigation Sprinkler Irrigation water Management water Resources Agricultural water demand Model
下载PDF
Water Demand Management in Jordan 被引量:1
20
作者 Nadhir Al-Ansari N. Alibrahiem +1 位作者 M. Alsaman Sven Knutsson 《Engineering(科研)》 2014年第1期19-26,共8页
Jordan is located in the Middle East in the eastern Mediterranean. It has a surface area of approximately 90,000 km2 and its population reaches 6.3 million. Jordan is the fourth driest countries in the World and water... Jordan is located in the Middle East in the eastern Mediterranean. It has a surface area of approximately 90,000 km2 and its population reaches 6.3 million. Jordan is the fourth driest countries in the World and water demand exceeds Jordan’s available water resources. Annual per capita water availability has declined from 3600 m3/year in 1946 to 145 m3/year today. It is estimated that the population will continue to grow from about 5.87 million in 2008 to over 7.80 million by 2022. Total projected water demand will be 1673 million cubic meters by 2022. Fifteen-year complete records for water consumption were studied to see the supply and demand variation with time. It had been noticed that water demand management will address the actual needs for water. This management program will ensure further reduction in water use, reduce water loses through the distribution supply net, prevent pollution. In addition, it will help minimize water disposal in nature, make efficient use of available water resources, plan for future new water resources prudently and finally impose a real cost for water supply that would be acceptable. In addition to the above, public awareness program is to be put in action. Such a program should be used in schools as well as the media. The public is to be aware of the problem and how they can assist with overcoming the water shortage crisis. 展开更多
关键词 water MANAGEMENT water demand MANAGEMENT water SCARCITY JORDAN
下载PDF
上一页 1 2 159 下一页 到第
使用帮助 返回顶部