Arid zones, which cover approximately 40 percent of the earth’s land surface, support complicated and widely varied ecological systems. As such, arid zones are an important composition of the global terrestrial ecosy...Arid zones, which cover approximately 40 percent of the earth’s land surface, support complicated and widely varied ecological systems. As such, arid zones are an important composition of the global terrestrial ecosystem, and water is the key and abiotic lim-ited factor in ecosystem-driven processes in these areas. Ecohydrology is a new cross discipline that provides, in an objective and comprehensive manner, novel ideas and approaches to the evaluation of the interaction and feedback mechanisms involved in the soil–vegetation systems in arid zones. In addition, ecohydrology provides a theoretical basis of ecological restoration that is cen-tered on vegetation construction. In this paper, long-term monitoring and local observations in the transitional belt between a de-sertified steppe and a steppified desert at the Shapotou Desert Research and Experiment Station, Tengger Desert, in northern China, were evaluated. The primary achievements and related research progress regarding ecohydrology in arid zones were analyzed and summarized, as a keystone, and the response of soil ecohydrological processes to the changes in the species composition, structure, and function of sandland vegetation was discussed. Meanwhile, the long-term ecological effects and mechanism of regulation of vegetation on soil habitat and on water-cycling were considered. As a vital participant in the ecohydrological processes of soil–vegetation systems, the studies on biological soil crusts was also summarized, and related theoretical models of restoration based on the water balance was reviewed.展开更多
Research on the coupling of soil,vegetation,and hydrological processes is not only a research hotspot in disciplines such as pedology,ecohydrology and Earth system science but also important for achieving sustainable ...Research on the coupling of soil,vegetation,and hydrological processes is not only a research hotspot in disciplines such as pedology,ecohydrology and Earth system science but also important for achieving sustainable development.However,scientists from different disciplines usually study the coupling mechanism of soil-vegetation-hydrological processes at very different space and time scales,and the mechanistic connections between different scales are quite few.This article reviewed research advances in coupled soil-vegetation-hydrological processes at different spatial scales—from leaf stomata to watershed and regional scales—and summarized the spatial upscaling methods and modeling approaches of coupled soil-vegetationhydrological processes.We identify and summarize the following coupling processes:(1)carbon-water exchange in leaf stomata and root-soil interface;(2)changes in soil aggregates and profile hydraulic properties caused by plant roots and water movement;(3)precipitation and soil moisture redistribution by plant canopy and root;(4)interactions between vegetation patches and local hydrological process;(5)links between plant community succession and soil development;and(6)links between watershed/regional water budget and vegetation phenology and production.Meanwhile,the limitations and knowledge gaps in the observations,mechanisms,scaling methods,and modeling approaches of coupled soil-vegetation-hydrological processes were analyzed.To achieve a deep integration of various coupling processes across different spatiotemporal scales,future work should strengthen multiscale,multifactor and multiprocess soil-vegetation-hydrology coupling observations and mechanism studies,develop new scaling methods,identify different feedback pathways,and take time-variable plant behavior and soil hydraulic properties into account during modeling.展开更多
基金supported by the National Natural Scientific Foundation of China (40825001)
文摘Arid zones, which cover approximately 40 percent of the earth’s land surface, support complicated and widely varied ecological systems. As such, arid zones are an important composition of the global terrestrial ecosystem, and water is the key and abiotic lim-ited factor in ecosystem-driven processes in these areas. Ecohydrology is a new cross discipline that provides, in an objective and comprehensive manner, novel ideas and approaches to the evaluation of the interaction and feedback mechanisms involved in the soil–vegetation systems in arid zones. In addition, ecohydrology provides a theoretical basis of ecological restoration that is cen-tered on vegetation construction. In this paper, long-term monitoring and local observations in the transitional belt between a de-sertified steppe and a steppified desert at the Shapotou Desert Research and Experiment Station, Tengger Desert, in northern China, were evaluated. The primary achievements and related research progress regarding ecohydrology in arid zones were analyzed and summarized, as a keystone, and the response of soil ecohydrological processes to the changes in the species composition, structure, and function of sandland vegetation was discussed. Meanwhile, the long-term ecological effects and mechanism of regulation of vegetation on soil habitat and on water-cycling were considered. As a vital participant in the ecohydrological processes of soil–vegetation systems, the studies on biological soil crusts was also summarized, and related theoretical models of restoration based on the water balance was reviewed.
基金supported by the National Natural Science Foundation of China(Grant Nos.41971029,41730854)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0306)。
文摘Research on the coupling of soil,vegetation,and hydrological processes is not only a research hotspot in disciplines such as pedology,ecohydrology and Earth system science but also important for achieving sustainable development.However,scientists from different disciplines usually study the coupling mechanism of soil-vegetation-hydrological processes at very different space and time scales,and the mechanistic connections between different scales are quite few.This article reviewed research advances in coupled soil-vegetation-hydrological processes at different spatial scales—from leaf stomata to watershed and regional scales—and summarized the spatial upscaling methods and modeling approaches of coupled soil-vegetationhydrological processes.We identify and summarize the following coupling processes:(1)carbon-water exchange in leaf stomata and root-soil interface;(2)changes in soil aggregates and profile hydraulic properties caused by plant roots and water movement;(3)precipitation and soil moisture redistribution by plant canopy and root;(4)interactions between vegetation patches and local hydrological process;(5)links between plant community succession and soil development;and(6)links between watershed/regional water budget and vegetation phenology and production.Meanwhile,the limitations and knowledge gaps in the observations,mechanisms,scaling methods,and modeling approaches of coupled soil-vegetation-hydrological processes were analyzed.To achieve a deep integration of various coupling processes across different spatiotemporal scales,future work should strengthen multiscale,multifactor and multiprocess soil-vegetation-hydrology coupling observations and mechanism studies,develop new scaling methods,identify different feedback pathways,and take time-variable plant behavior and soil hydraulic properties into account during modeling.