期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The ecohydrology of the soil-vegetation system restoration in arid zones: a review 被引量:4
1
作者 XinRong Li 1,2, ZhiShan Zhang 1,2, Lei Huang 1,2, LiChao Liu 1,2, XinPing Wang 1,2 1. Shapotou Desert Research and Experiment Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. 2. Laboratory of Stress Ecophysiology and Biotechnology, Cold and Arid Regions Environmental and Engineering Research In-stitute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. 《Research in Cold and Arid Regions》 2009年第3期199-206,共8页
Arid zones, which cover approximately 40 percent of the earth’s land surface, support complicated and widely varied ecological systems. As such, arid zones are an important composition of the global terrestrial ecosy... Arid zones, which cover approximately 40 percent of the earth’s land surface, support complicated and widely varied ecological systems. As such, arid zones are an important composition of the global terrestrial ecosystem, and water is the key and abiotic lim-ited factor in ecosystem-driven processes in these areas. Ecohydrology is a new cross discipline that provides, in an objective and comprehensive manner, novel ideas and approaches to the evaluation of the interaction and feedback mechanisms involved in the soil–vegetation systems in arid zones. In addition, ecohydrology provides a theoretical basis of ecological restoration that is cen-tered on vegetation construction. In this paper, long-term monitoring and local observations in the transitional belt between a de-sertified steppe and a steppified desert at the Shapotou Desert Research and Experiment Station, Tengger Desert, in northern China, were evaluated. The primary achievements and related research progress regarding ecohydrology in arid zones were analyzed and summarized, as a keystone, and the response of soil ecohydrological processes to the changes in the species composition, structure, and function of sandland vegetation was discussed. Meanwhile, the long-term ecological effects and mechanism of regulation of vegetation on soil habitat and on water-cycling were considered. As a vital participant in the ecohydrological processes of soil–vegetation systems, the studies on biological soil crusts was also summarized, and related theoretical models of restoration based on the water balance was reviewed. 展开更多
关键词 vegetation regulation by soil moisture ecohydrology process biological soil crust ecological restoration of soil–vegetation systems
下载PDF
A comprehensive review on coupled processes and mechanisms of soil-vegetation-hydrology, and recent research advances 被引量:3
2
作者 Zhongkai LI Xiaoyan LI +8 位作者 Sha ZHOU Xiaofan YANG Yongshuo FU Chiyuan MIAO Shuai WANG Guanghui ZHANG Xiuchen WU Chao YANG Yuanhong DENG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第11期2083-2114,共32页
Research on the coupling of soil,vegetation,and hydrological processes is not only a research hotspot in disciplines such as pedology,ecohydrology and Earth system science but also important for achieving sustainable ... Research on the coupling of soil,vegetation,and hydrological processes is not only a research hotspot in disciplines such as pedology,ecohydrology and Earth system science but also important for achieving sustainable development.However,scientists from different disciplines usually study the coupling mechanism of soil-vegetation-hydrological processes at very different space and time scales,and the mechanistic connections between different scales are quite few.This article reviewed research advances in coupled soil-vegetation-hydrological processes at different spatial scales—from leaf stomata to watershed and regional scales—and summarized the spatial upscaling methods and modeling approaches of coupled soil-vegetationhydrological processes.We identify and summarize the following coupling processes:(1)carbon-water exchange in leaf stomata and root-soil interface;(2)changes in soil aggregates and profile hydraulic properties caused by plant roots and water movement;(3)precipitation and soil moisture redistribution by plant canopy and root;(4)interactions between vegetation patches and local hydrological process;(5)links between plant community succession and soil development;and(6)links between watershed/regional water budget and vegetation phenology and production.Meanwhile,the limitations and knowledge gaps in the observations,mechanisms,scaling methods,and modeling approaches of coupled soil-vegetation-hydrological processes were analyzed.To achieve a deep integration of various coupling processes across different spatiotemporal scales,future work should strengthen multiscale,multifactor and multiprocess soil-vegetation-hydrology coupling observations and mechanism studies,develop new scaling methods,identify different feedback pathways,and take time-variable plant behavior and soil hydraulic properties into account during modeling. 展开更多
关键词 ecohydrological process Soil process Plant-soil feedback Modeling approaches Scaling method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部