期刊文献+
共找到1,294篇文章
< 1 2 65 >
每页显示 20 50 100
Application of the improved dung beetle optimizer,muti-head attention and hybrid deep learning algorithms to groundwater depth prediction in the Ningxia area,China
1
作者 Jiarui Cai Bo Sun +5 位作者 Huijun Wang Yi Zheng Siyu Zhou Huixin Li Yanyan Huang Peishu Zong 《Atmospheric and Oceanic Science Letters》 2025年第1期18-23,共6页
Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th... Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance. 展开更多
关键词 groundwater depth Multi-head attention Improved dung beetle optimizer CNN-LSTM CNN-GRU Ningxia
下载PDF
Investigation of Groundwater Quality with Borehole Depth in the Basin Granitoids of the Ashanti Region of Ghana
2
作者 Bernard Ofosu Augustine Kofi Asante +2 位作者 Festus Anane Mensah Umar-Farouk Usman Naa Korkoi Ayeh 《Journal of Water Resource and Protection》 CAS 2024年第5期381-394,共14页
The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study ther... The dependence of groundwater quality on borehole depth is usually debatable in groundwater studies, especially in complex geological formations where aquifer characteristics vary spatially with depth. This study therefore seeks to investigate the relationship between borehole depth and groundwater quality across the granitoid aquifers within the Birimian Supergroup in the Ashanti Region. Physicochemical analysis records of groundwater quality data were collected from 23 boreholes of public and private institutions in the Ashanti Region of Ghana, and the parametric values of iron, fluoride, total hardness, pH, nitrate, and nitrite were used to study the groundwater quality-depth relationship. The results showed that the depth-to-groundwater quality indicated a marginal increase in water quality in the range of 30 to 50 m, which is mathematically represented by the low-value correlation coefficient (r<sup>2</sup> = 0.026). A relatively significant increase occurs in the depth range of 50 to 80 m, which is given by a correlation coefficient of r<sup>2</sup> = 0.298. The mean percent parameter compatibility was 74%, 82%, 89%, and 97% at 50, 60, 70, and 80 m depths, respectively. The variations in groundwater quality per depth ratio ranged from 1.48, 1.37, 1.27, and 1.21 for 50, 60, 70, and 80 m depth, respectively. The recommended minimum borehole depth for excellent groundwater quality is suggested with a compatibility per meter depth ratio of 1.37. This results in a range between 50 and 70 m as the most desirable drilling depth for excellent groundwater quality within the granitoids of the Birimian Supergroup of the Ashanti Region in Ghana. 展开更多
关键词 groundwater Quality Borehole depth Birimian Supergroup Granitoid Aquifers Ashanti Region
下载PDF
Research on groundwater ecological environment mapping based on ecological service function:A case study of five Central Asian countries and neighboring regions of China
3
作者 Li-qiang Ge Yan-pei Cheng +4 位作者 Qing Yi Xue-ru Wen Hua Dong Kun Liu Jian-kang Zhang 《Journal of Groundwater Science and Engineering》 2024年第3期339-346,共8页
The groundwater system is a unique ecosystem that serves both resource and ecological functions.Hydrogeologists have conducted extensive theoretical research and practical work on groundwater ecological mapping.This p... The groundwater system is a unique ecosystem that serves both resource and ecological functions.Hydrogeologists have conducted extensive theoretical research and practical work on groundwater ecological mapping.This paper,based on the study of groundwater resources and surface ecology in the five Central Asian countries and adjacent areas of China,introduces the concept of ecosystem service functions.It establishes a groundwater ecological zoning index system and conducts research of ecological mapping using the five Central Asian countries and adjacent areas of China as examples.Through this process,the ecosystem service functions of groundwater can be more comprehensively reflected,which can better guide regional geological environment protection and industrial planning.This approach helps coordinate the relationship between socio-economic development and water resource protection,maintain the health of the groundwater ecological environment,enhance the value of groundwater ecological services,and promote the sustainable development of regional economies and societies. 展开更多
关键词 groundwater ecosystem groundwater ecological service ecological zoning of groundwater Five Central Asian countries
下载PDF
Spatio-temporal variation of depth to groundwater level and its driving factors in arid and semi-arid regions of India
4
作者 Suchitra PANDEY Geetilaxmi MOHAPATRA Rahul ARORA 《Regional Sustainability》 2024年第2期103-122,共20页
Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth t... Climate change and increasing anthropogenic activities,such as over-exploitation of groundwater,are exerting unavoidable stress on groundwater resources.This study investigated the spatio-temporal variation of depth to groundwater level(DGWL)and the impacts of climatic(precipitation,maximum temperature,and minimum temperature)and anthropogenic(gross district product(GDP),population,and net irrigated area(NIA))variables on DGWL during 1994-2020.The study considered DGWL in 113 observation wells and piezometers located in arid western plains(Barmer and Jodhpur districts)and semi-arid eastern plains(Jaipur,Ajmer,Dausa,and Tonk districts)of Rajasthan State,India.Statistical methods were employed to examine the annual and seasonal patterns of DGWL,and the generalized additive model(GAM)was used to determine the impacts of climatic and anthropogenic variables on DGWL.During 1994-2020,except for Barmer District,where the mean annual DGWL was almost constant(around 26.50 m),all other districts exhibited increase in DGWL,with Ajmer District experiencing the most increase.The results also revealed that 36 observation wells and piezometers showed a statistically significant annual increasing trend in DGWL and 34 observation wells and piezometers exhibited a statistically significant decreasing trend in DGWL.Similarly,32 observation wells and piezometers showed an statistically significant increasing trend and 37 observation wells and piezometers showed a statistically significant decreasing trend in winter;33 observation wells and piezometers indicated a statistically significant increasing trend and 34 had a statistically significant decreasing trend in post-monsoon;35 observation wells and piezometers exhibited a statistically significant increasing trend and 32 observation wells and piezometers showed a statistically significant decreasing trend in pre-monsoon;and 36 observation wells and piezometers reflected a statistically significant increasing trend and 30 observation wells and piezometers reflected a statistically significant decreasing trend in monsoon.Interestingly,most of the observation wells and piezometers with increasing trends of DGWL were located in Dausa and Jaipur districts.Furthermore,the GAM analysis revealed that climatic variables,such as precipitation,significantly affected DGWL in Barmer District,and DGWL in all other districts was influenced by anthropogenic variables,including GDP,NIA,and population.As a result,stringent regulations should be implemented to curb excessive groundwater extraction,manage agricultural water demand,initiate proactive aquifer recharge programs,and strengthen sustainable management in these water-scarce regions. 展开更多
关键词 Climate change Generalized additive model(GAM) depth to groundwater level(DGWL) Climatic and anthropogenic variables Arid and semi-arid regions
下载PDF
Responses of root growth of Alhagi sparsifolia Shap. (Fabaceae) to different simulated groundwater depths in the southern fringe of the Taklimakan Desert, China 被引量:14
5
作者 FanJiang ZENG Cong SONG +5 位作者 HaiFeng GUO Bo LIU WeiCheng LUO DongWei GUI Stefan ARNDT DaLi GUO 《Journal of Arid Land》 SCIE CSCD 2013年第2期220-232,共13页
Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- t... Alhagi sparsifolia Shap. (Fabaceae) is a spiny, perennial herb. The species grows in the salinized, arid regions in North China. This study investigated the response characteristics of the root growth and the dis- tribution of one-year-old A. sparsifolia seedlings to different groundwater depths in controlled plots. The eco- logical adaptability of the root systems of A. sparsifolia seedlings was examined using the artificial digging method. Results showed that: (1) A. sparsifolia seedlings adapted to an increase in groundwater depth mainly through increasing the penetration depth and growth rate of vertical roots. The vertical roots grew rapidly when soil moisture content reached 3%-9%, but slowly when soil moisture content was 13%-20%. The vertical roots stopped growing when soil moisture content reached 30% (the critical soil moisture point). (2) The morphological plasticity of roots is an important strategy used by A. sparsifolia seedlings to obtain water and adapt to dry soil conditions. When the groundwater table was shallow, horizontal roots quickly expanded and tillering increased in order to compete for light resources, whereas when the groundwater table was deeper, vertical roots developed quickly to exploit space in the deeper soil layers. (3) The decrease in groundwater depth was probably respon- sible for the root distribution in the shallow soil layers. Root biomass and surface area both decreased with soil depth. One strategy of A. sparsifolia seedlings in dealing with the increase in groundwater depth is to increase root biomass in the deep soil layers. The relationship between the root growth/distribution of A. sparsifolia and the depth of groundwater table can be used as guidance for harvesting A. sparsifolia biomass and managing water resources for forage grasses. It is also of ecological significance as it reveals how desert plants adapt to arid environments. 展开更多
关键词 Alhagi sparsifolia Shap. simulated groundwater depth root system growth and distribution ecological adaptability root morphological plasticity
下载PDF
Using the concept of ecological groundwater level to evaluate shallow groundwater resources in hyperarid desert regions 被引量:11
6
作者 Qi FENG JiaZhong PENG +2 位作者 JianGuo LI HaiYang XI JianHua SI 《Journal of Arid Land》 SCIE 2012年第4期378-389,共12页
This paper, based on the analysis and calculation of the groundwater resources in an arid region from 1980 to 2001, put forward the concept of ecological groundwater level threshold for either salinity control or the ... This paper, based on the analysis and calculation of the groundwater resources in an arid region from 1980 to 2001, put forward the concept of ecological groundwater level threshold for either salinity control or the determination of ecological warning. The surveys suggest that soil moisture and soil salinity are the most important environmental factors in determining the distribution and changes in vegetation. The groundwater level threshold of ecological warning can be determined by using a network of groundwater depth observation sites that monitor the environmental moisture gradient as reflected by plant physiological characteristics. According to long-term field observations within the Ejin oases, the groundwater level threshold for salinity control varied between 0.5 m and 1.5 m, and the ecological warning threshold varied between 3.5 m and 4.0 m. The quantity of groundwater re- sources (renewable water resources, ecological water resources, and exploitable water resources) in arid areas can be calculated from regional groundwater level information, without localized hydrogeological data. The concept of groundwater level threshold of ecological warning was established according to water development and water re- sources supply, and available groundwater resources were calculated. The concept not only enriches and broadens the content of groundwater studies, but also helps in predicting the prospects for water resources development. 展开更多
关键词 evaluation water resources Ejin oasis ecological groundwater level groundwater level threshold of ecologicalwarning
下载PDF
Influence of groundwater depth on species composition and community structure in the transition zone of Cele oasis 被引量:9
7
作者 Frank M. THOMAS 《Journal of Arid Land》 SCIE 2010年第4期235-242,共8页
The paper analyzes the hypothesis that the distribution of dominant plant species and characteristics of plant communities are related to groundwater depth. The results showed that variations of groundwater depth impa... The paper analyzes the hypothesis that the distribution of dominant plant species and characteristics of plant communities are related to groundwater depth. The results showed that variations of groundwater depth impacted distributions and characteristics of dominant plant communities. However, besides groundwater depth, the community composition and species diversity were also influenced by physiognomy of the habitat. Based on the similarity coefficient, the differences between dominant plant communities were significant at different groundwater depths. Compared with other results relating to desert vegetation and groundwater depth, variations of community distribution were similar at the large spatial scale. However, in this extremely arid region, there were significant differences in community type and community succession when compared with other arid regions, especially in relationship to deep groundwater depth. With groundwater depth from deep to shallow, communities transformed with the sequence of Alhagi communities, Tamarix spp. communities, Populus communities, Phragmites communities, and Sophora communities. At groundwater depth of less than 6.0 m, the community type and composition changed, and the species diversity increased. Among these dominant species, Tamarix exhibited the biggest efficiency in resource utilization according to niche breadth, which means it possessed the best adaptability to environmental conditions at the oasis margins. 展开更多
关键词 groundwater depth community characteristic niche breadth oases Taklamakan desert
下载PDF
Assessment of Soil Water Content in Field with Antecedent Precipitation Index and Groundwater Depth in the Yangtze River Estuary 被引量:5
8
作者 XIE Wen-ping YANG Jing-song 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第4期711-722,共12页
To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, wh... To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, where seawater intrusion was strong and salt-water variation is one of the limiting factors of local agriculture. In present paper, relation between antecedent precipitation index (API) and soil water content is studied, and effects of groundwater depth on soil water content was analyzed. A relatively accurate prediction result of soil water content was reached using a neural network model. The impact analysis result showed that the variation of the API was consistent with soil water content and it displayed significant correlations with soil water content in both 20 and 50 cm soil layer, and higher correlation was observed in the layer of 20 cm. Groundwater impact analysis suggested that soil moisture was affected by the depth of groundwater, and was affected more greatly by groundwater at depth of 50 cm than that at 20 cm layer. By introducing API, groundwater depth and temperature together, a BP artificial network model was established to predict soil water content and an acceptable agreement was achieved. The model can be used for supplementing monitoring data of soil water content and predicting soil water content in shallow groundwater areas, and can provide favorable support for the research of water and salt transport in estuary area. 展开更多
关键词 antecedent precipitation index groundwater depth soil water content ASSESSMENT
下载PDF
The Effects of Groundwater Depth on the Soil Evaporation in Horqin Sandy Land, China 被引量:6
9
作者 YANG Tingting ALA Musa +1 位作者 GUAN Dexin WANG Anzhi 《Chinese Geographical Science》 SCIE CSCD 2021年第4期727-734,共8页
The interactions between groundwater depth and soil hydrological processes, play an important role in both arid and semi-arid ecosystems. The effect of groundwater depth on soil water variations were neglected or not ... The interactions between groundwater depth and soil hydrological processes, play an important role in both arid and semi-arid ecosystems. The effect of groundwater depth on soil water variations were neglected or not explicitly treated. In this paper, we combine a simulation experiment and a water flow module of HYDRUS-1D model to study the variation in soil evaporation under different groundwater depth conditions and the relationship between groundwater depth and evaporation efficiency in Horqin Sandy Land, China.The results showed that with an increase in groundwater depth, the evaporation of soil and the recharge of groundwater decrease. In this study, the groundwater recharge did not account for more than 21% of the soil evaporation for the depths of groundwater examined. The soil water content at 60 cm was less affected by the evaporation efficiency when the mean groundwater depth was 61 cm during the experimental period. In addition, the evaporation efficiency(the ratio of actual evaporation to potential evaporation) decreases with the increase in groundwater depth during the experiment. Furthermore, the soil evaporation was not affected by groundwater when the groundwater depth was deeper than 239 cm. 展开更多
关键词 groundwater depth soil evaporation evaporation efficiency HYDRUS-1D
下载PDF
Groundwater ecological environment and the mapping of Asia 被引量:3
10
作者 DONG Hua GE Li-qiang 《Journal of Groundwater Science and Engineering》 2015年第2期118-126,共9页
Based on the mapping of groundwater resources and environmental geology in China and its surrounding regions, Groundwater Ecological Environment Map of Asia is drawn to broadly reflect the ecological situation of Asia... Based on the mapping of groundwater resources and environmental geology in China and its surrounding regions, Groundwater Ecological Environment Map of Asia is drawn to broadly reflect the ecological situation of Asian groundwater, categorize its ecological environment into three basic types and elaborate the research categories. This paper analyzes and summarizes the major characteristics and distribution regularities of the groundwater ecological environment of Asia to reveal the key related problem so as to provide a necessary reference for the construction and planning of One Belt and One Road. 展开更多
关键词 ASIA ecological environment groundwater ecological environment MAPPING
下载PDF
Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years 被引量:7
11
作者 She-ming Chen Fu-tian Liu +2 位作者 Zhuo Zhang Qian Zhang Wei Wang 《China Geology》 2021年第3期455-462,共8页
The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone.It enjoys rapid economic and social development while suffering relatively water scarcity.The overexploitation of groundwater in th... The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone.It enjoys rapid economic and social development while suffering relatively water scarcity.The overexploitation of groundwater in the Luanhe River Delta in recent years has caused the continuous drop of groundwater level and serious environmental and geological problems.This study systematically analyzes the evolution characteristics of the population,economy,and groundwater exploitation in the Luanhe River Delta and summarizes the change patterns of the groundwater flow regime in different aquifers in the Luanhe River Delta according to previous water resource assessment data as well as the latest groundwater survey results.Through comparison of major source/sink terms and groundwater resources,the study reveals the impacts of human activities on the groundwater resources and ecological environment in the study area over the past 30 years from 1990 to 2020.The results are as follows.The average annual drop rate of shallow groundwater and the deep groundwater in the centers of depression cones is 0.4 m and 1.64 m,respectively in the Luanhe River Delta in the past 30 years.The depression cones of shallow and deep groundwater in the study area cover an area of 545.32 km^(2)and 548.79 km^(2),respectively,accounting for more than 10%of the total area of the Luanhe River Delta.Overexploitation of groundwater has further aggravated land subsidence.As a result,two large-scale subsidence centers have formed,with a maximum subsidence rate of up to 120 mm/a.The drop of groundwater level has induced some ecological problems in the Luanhe River Delta area,such as the zero flow and water quality deterioration of rivers and continuous shrinkage of natural wetlands and water.Meanwhile,the proportion of natural wetland area to the total wetland area has been decreased from 99%to 8%and the water area from 1776 km^(2)to 263 km^(2).These results will provide data for groundwater overexploitation control,land subsidence prevention,and ecological restoration in plains and provide services for water resources management and national land space planning. 展开更多
关键词 ecological environment Human activities groundwater flow regime groundwater resources groundwater depression cone Land subsidence Hydrogeology survey engineering Luanhe River Delta Hebei Province North China
下载PDF
Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed 被引量:6
12
作者 Min Liu Zhen-long Nie +4 位作者 Le Cao Li-fang Wang Hui-xiong Lu Zhe Wang Pu-cheng Zhu 《Journal of Groundwater Science and Engineering》 2021年第4期326-340,共15页
With an arid climate and shortage of water resources,the groundwater dependent ecosystems in the oasis-desert ecotone of the Shiyang River Watershed has been extremely damaged,and the water crisis in the oasis has bec... With an arid climate and shortage of water resources,the groundwater dependent ecosystems in the oasis-desert ecotone of the Shiyang River Watershed has been extremely damaged,and the water crisis in the oasis has become a major concern in the social and the scientific community.In this study,the degene-ration characteristics of the groundwater ecological function was identified and comprehensive evaluated,based on groundwater depth data,vegetation quadrat and normalized difference vegetation index(NDVI)from Landsat program.The results showed that(1)the suitable groundwater depth for sustainable ecology in the Shiyang River Watershed is about 2-4 m;(2)the terms of degenerative,qualitative and disastrous stages of the groundwater ecological function are defined with the groundwater depths of about 5 m,7 m and 10 m;(3)generally,the groundwater ecological function in the oasis-desert ecotone of the lower reaches of Shiyang River Watershed is weak with an area of 1397.9 km2 identified as the severe deterioration region,which accounted 74.7%of the total area.In the meantime,the percentages of the good,mild and moderate deterioration areas of groundwater ecological function are 3.5%,5.5%and 16.3%,respectively,which were mainly distributed in the Qingtu lake area and the southeastern area of the Shoucheng town;(4)the degradation and shrinkage of natural oasis could be attributed to the dramatic groundwater decline,which is generally caused by irrational use of water and soil resources.This study could provide theoretical basis and scientific support for the decision-making in environmental management and ecological restoration of the Shiyang River Watershed. 展开更多
关键词 Oasis-desert ecotone groundwater depth Normalized difference vegetation index(NDVI) Desert vegetation Degenerative change-qualitative change-disaster stages
下载PDF
Development,hotspots and trend directions of groundwater numerical simulation:A bibliometric and visualization analysis
13
作者 Liu Yang Yan-pei Cheng +1 位作者 Xue-ru Wen Jun Liu 《Journal of Groundwater Science and Engineering》 2024年第4期411-427,共17页
Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater res... Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater research.This study uses bibliometric visualization analysis to examine the progress and trends in groundwater numerical simulation methods.By analyzing literature indexed in the Web of Science database from January 1990 to February 2023,and employing tools such as Citespace and VOSviewer,we assessed publication volume,research institutions and their collaborations,prolific scholars,keyword clustering,and emerging trends.The findings indicate an overall upward trend in both the number of publications and citations concerning groundwater numerical simulations.Since 2010,the number of publications has tripled compared to the total before 2010,underscoring the increasing significance and potential of numerical simulation methods in groundwater science.China,in particular,has shown remarkable growth in this field over the past decade,surpassing the United States,Canada,and Germany.This progress is closely linked to strong national support and active participation from research institutions,especially the contributions from teams at Hohai University,China University of Geosciences,and the University of Science and Technology of China.Collaboration between research teams is primarily seen between China and the United States,with less noticeable cooperation among other countries,resulting in a diverse and dispersed development pattern.Keyword analysis highlights that international research hotspots include groundwater recharge,karst water,geothermal water migration,seawater intrusion,variable density flow,contaminant and solute transport,pollution remediation,and land subsidence.Looking ahead,groundwater numerical simulations are expected to play a more prominent role in areas such as climate change,surface water-groundwater interactions,the impact of groundwater nitrates on the environment and health,submarine groundwater discharge,ecological water use,groundwater management,and risk prevention. 展开更多
关键词 CLUSTERING Visualization analysis groundwater numerical simulation ecological water use groundwater management
下载PDF
Effect of groundwater on the ecological water environment of typical inland lakes in the Inner Mongolian Plateau 被引量:2
14
作者 Chu Yu Li-jie Wu +3 位作者 Yi-long Zhang Xiu-ya Wang Zhan-chuan Wang Zhou Zhang 《Journal of Groundwater Science and Engineering》 2022年第4期353-366,共14页
To explore the causes of the ecological environment deterioration of lakes in the Inner Mongolia Plateau,this study took a typical inland lake Daihai as an example,and investigated the groundwater recharge in the proc... To explore the causes of the ecological environment deterioration of lakes in the Inner Mongolia Plateau,this study took a typical inland lake Daihai as an example,and investigated the groundwater recharge in the process of lake shrinkage and eutrophication.Using the radon isotope(^(222)Rn)as the main means of investigation,the ^(222)Rn mass balance equation was established to evaluate the groundwater recharge in Daihai.The spatial variability of ^(222)Rn activity in lake water and groundwater,the contribution of groundwater recharge to lake water balance and its effect on nitrogen and phosphorus pollution in lake water were discussed.The analysis showed that,mainly controlled by the fault structure,the activity of ^(222)Rn in groundwater north and south of Daihai is higher than that in the east and west,and the difference in lithology and hydraulic gradient may also be the influencing factors of this phenomenon.The ^(222)Rn activity of the middle and southeast of the underlying lake is greater,indicating that the ^(222)Rn flux of groundwater inflow is higher,and the runoff intensity is greater,which is the main groundwater recharge area for the lake.The estimated groundwater recharge in 2021 was 3017×10^(4) m^(3),which was 57%of the total recharge to the lake,or 1.6 times and 8.1 times that of precipitation and surface runoff.The TN and TP contents in Daihai have been rising continuously,and the average TN and TP concentrations in the lake water in 2021 were 4.21 mg·L^(−1) and 0.12 mg·L^(−1),respectively.The TN and TP contents entering the lake with groundwater recharge were 6.8 times and 8.7 times above those of runoff,accounting for 87%and 90%of the total input,respectively.The calculation results showed that groundwater is not only the main source of recharge for Daihai,but also the main source of exogenous nutrients.In recent years,the pressurized exploitation of groundwater in the basin is beneficial in increasing the groundwater recharge to the lake,reducing the water balance difference of the lake,and slowing down the shrinking degree of the lake surface.However,under the action of high evaporation,nitrogen and phosphorus brought by groundwater recharge would become more concentrated in the lake,leading to a continuous increase in the content of nutrients and degree of eutrophication.Therefore,the impact of changes in regional groundwater quantity and quality on Daihai is an important issue that needs further assessment. 展开更多
关键词 groundwater recharge Radon isotopes Nitrogen and phosphorus pollution ecological environment Daihai
下载PDF
Determining the groundwater basin and surface watershed boundary of Dalinuoer Lake in the middle of Inner Mongolian Plateau,China and its impacts on the ecological environment 被引量:2
15
作者 Wen-peng Li Long-feng Wang +3 位作者 Yi-long Zhang Li-jie Wu Long-mei Zeng Zhong-sheng Tuo 《China Geology》 2021年第3期498-508,共11页
The surface watershed and groundwater basin have fixed recharge scale,which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding ... The surface watershed and groundwater basin have fixed recharge scale,which are not only the basic unit for hydrologic cycle research but also control the water resources formation and evolution and its corresponding eco-geological environment pattern.To accurately identify the boundary of the surface watershed and groundwater basin is the basis for properly understanding hydrologic cycle and conducting the water balance analysis at watershed scale in complicated geologic structure area,especially when the boundary are inconsistent.In this study,the Dalinuoer Lake located in the middle of the Inner Mongolian Plateau which has complicated geologic structure was selected as the representative case.Based on the multidisciplinary comprehensive analysis of topography,tectonics,hydrogeology,groundwater dynamics and stable isotopes,the results suggest the following:(1)The surface watershed ridge and groundwater basin divide of Dalinuoer Lake are inconsistent.The surface watershed was divided into two separate groundwater systems almost having no groundwater exchange by the SW-NE Haoluku Anticlinorium Fault which has obvious water-blocking effect.The surface drainage area of Dalinuoer Lake is 6139 km^(2).The northern regional A is the Dalinuoer Lake groundwater system with an area of 4838 km^(2),and the southern regional B is the Xilamulun Riverhead groundwater system with an area of 1301 km^(2).(2)The groundwater in the southern of regional A and the spring-feeding river are the important recharge sources for the Dalinuoer Lake,and it has greater recharge effects than the northern Gonggeer River system.(3)It is speculated that the trend of Haoluku Anticlinorium Fault is the boundary of the westerlies and the East Asian summer Monsoon(EASM)climate systems,which further pinpoints the predecessor’s understanding of this boundary line.At present,the Dalinuoer Lake watershed is proved to have gone through a prominent warming-drying trend periods,which leads to the precipitation reduction,temperature rise,human activities water usage increasement.So the hydrological cycle and lake eco-environment at watershed scale will still bound to be change,which may pose the potential deterioration risk on the suitability of fish habitat.The results can provide basic support for better understanding water balance evolution and lake area shrinkage cause as well as the ecological protection and restoration implementation of Dalinuoer Lake watershed. 展开更多
关键词 groundwater basin Surface watershed ecological environment Hydrogeology condition Stable environmental isotopes Geologic stucture Dalinuoer Lake Mongolian Plateau
下载PDF
Ecological Board for Groundwaters of the Irrigated Grounds
16
作者 Mavlyanov Gani Narimonovich V.G.Hodjaev E.N.Mavlyanov 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期25-25,共1页
The agricultural production on the irrigated grounds can not carry on without mineral fertilizers,pesticides and herbicides.Especially it is shown in Uzbekistan, in cultivation of cotton.There is an increase in minera... The agricultural production on the irrigated grounds can not carry on without mineral fertilizers,pesticides and herbicides.Especially it is shown in Uzbekistan, in cultivation of cotton.There is an increase in mineralization,rigidity,quantity of heavy metals,phenols and other pollutions in the cotton fields.Thus there is an exhaustion of stocks of fresh underground waters.In the year 2003 we were offered to create 展开更多
关键词 pollution groundwater PESTICIDES HERBICIDES ecological BOARD
下载PDF
Influence of Reservoir on Groundwater Environment in the Ecologically Fragile Area, Northwest of China
17
作者 Ling Wang Tongqin Liu +2 位作者 Feng Tian Jianguo Feng Guiyu Zhao 《Journal of Water Resource and Protection》 2023年第6期315-331,共17页
As the research proposed reservoirs after impact on the surrounding ecological fragile areas of groundwater level and scope, through the proposed reservoir area and its surrounding data collecting, hydrogeology survey... As the research proposed reservoirs after impact on the surrounding ecological fragile areas of groundwater level and scope, through the proposed reservoir area and its surrounding data collecting, hydrogeology survey and related test, for Modflow system simulation platform, through to the boundary conditions, initial conditions and source sink term and related hydrogeological parameters, the model identification and verification, The model of hydrogeological parameters in the study area is constructed. The simulation results show that the groundwater depth near the reservoir area will be higher than the critical value (1.8 m) of secondary salinization of soil. At the same time, according to the investigation and experiment, if the reservoir does not do seepage treatment, the water infiltration in the reservoir will aggravate the environmental hydrogeological problems in the ecologically fragile area. 展开更多
关键词 ecologically Fragile Area Reservoir Construction groundwater Numerical Simulation Environmental Influence
下载PDF
Changes in groundwater levels and the response of natural vegetation to transfer of water to the lower reaches of the Tarim River 被引量:23
18
作者 XU Hai-liang YE Mao LI Ji-mei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第10期1199-1207,共9页
Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of... Restoration and reconstruction of the degraded Tarim River ecosystem is an important challenge. A goal of an ecological water conveyance project is to protect and restore the natural vegetation in the lower reaches of Tadm River by transferring water from Bosten Lake, through the river channel, to the lower reaches. This study describes the changes in groundwater depth during the water transfer and the respondence of riparian vegetation to alterations in groundwater levels. The results indicate that groundwater depth along the Tarim River channel has a significant spatial-temporal component. Groundwater levels closest to the river channel show the most immediate and pronounced changes as a response to water transfer while those further away respond more slowly, although the observed change appears to be longer in duration. With a rise in the groundwater level, natural vegetation responded with higher growth rates, biomass and biodiversity. These favorable changes show that it is feasible to protect and restore the degraded natural vegetation by raising the groundwater depth. Plant communities are likely to reflect the hysteresis phenomenon, requiting higher water levels to initiate and stimulate desired growth than what may be needed to maintain the plant community. Because different species have different ecologies, including different root depths and densities and water needs, their response to increasing water availability will be spatially and temporally heterogenous. The response of vegetation is also influenced by microtopography and watering style. This paper discusses strategies for the protection and restoration of the degraded vegetation in the lower reaches of the Tarim River and provides information to complement ongoing theoretical research into ecological restoration in add or semi-arid ecosystems. 展开更多
关键词 the lower reaches of Tarim River ecological watering conveyance groundwater depth ecological response natural vegetation
下载PDF
Influence of groundwater level change on vegetation coverage and their spatial variation in arid regions 被引量:6
19
作者 苏里坦 宋郁东 玛丽娜 《Journal of Geographical Sciences》 SCIE CSCD 2004年第3期323-329,共7页
Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application ... Sampling and testing are conducted on groundwater depth and vegetation coverage in the 670 km2 of the Sangong River Basin and semi-variance function analysis is made afterwards on the data obtained by the application of geo-statistics. Results showed that the variance curve of the groundwater depth and vegetation coverage displays an exponential model. Analysis of sampling data in 2003 indicates that the groundwater depth and vegetation coverage change similarly in space in this area. The Sangong River Basin is composed of upper oasis, middle ecotone and lower sand dune. In oasis and ecotone, influenced by irrigation of the adjoining oasis, groundwater level has been raised and soil water content also increased compared with sand dune nearby, vegetation developed well. But in the lower reaches of the Sangong River Basin, because of descending of groundwater level, soil water content decreased and vegetation degenerated. From oasis to abandoned land and desert grassland, vegetation coverage and groundwater level changed greatly with significant difference respectively in spatial variation. Distinct but similar spatial variability exists among the groundwater depth and vegetation coverage in the study area, namely, the vegetation coverage decreasing (increasing) as the groundwater depth increases (decreases). This illustrates the great dependence of vegetation coverage on groundwater depth in arid regions and further implies that among the great number of factors affecting vegetation coverage in arid regions, groundwater depth turns out to be the most determinant one. 展开更多
关键词 geo-statistics groundwater level groundwater depth arid regions vegetation coverage semi-variance function spatial variation KRIGING
下载PDF
Temporal and spatial variations of net primary productivity and its response to groundwater of a typical oasis in the Tarim Basin, China 被引量:3
20
作者 SUN Lingxiao YU Yang +7 位作者 GAO Yuting ZHANG Haiyan YU Xiang HE Jing WANG Dagang Ireneusz MALIK Malgorzata WISTUBA YU Ruide 《Journal of Arid Land》 SCIE CSCD 2021年第11期1142-1154,共13页
Net primary productivity (NPP) of the vegetation in an oasis can reflect the productivity capacity of a plant community under natural environmental conditions. Owing to the extreme arid climate conditions and scarce p... Net primary productivity (NPP) of the vegetation in an oasis can reflect the productivity capacity of a plant community under natural environmental conditions. Owing to the extreme arid climate conditions and scarce precipitation in the arid oasis regions, groundwater plays a key role in restricting the development of the vegetation. The Qira Oasis is located on the southern margin of the Taklimakan Desert (Tarim Basin, China) that is one of the most vulnerable regions regarding vegetation growth and water scarcity in the world. Based on remote sensing images of the Qira Oasis and daily meteorological data measured by the ground stations during the period 2006-2019, this study analyzed the temporal and spatial patterns of NPP in the oasis as well as its relation with the variation of groundwater depth using a modified Carnegie Ames Stanford Approach (CASA) model. At the spatial scale, NPP of the vegetation decreased from the interior of the Qira Oasis to the margin;at the temporal scale, NPP of the vegetation in the oasis fluctuated significantly (ranging from 29.80 to 50.07 g C/(m2•month)) but generally showed an increasing trend, with the average increase rate of 0.07 g C/(m2•month). The regions with decreasing NPP occupied 64% of the total area of the oasis. During the study period, NPP of both farmland and grassland showed an increasing trend, while that of forest showed a decreasing trend. The depth of groundwater was deep in the south of the oasis and shallow in the north, showing a gradual increasing trend from south to north. Groundwater, as one of the key factors in the surface change and evolution of the arid oasis, determines the succession direction of the vegetation in the Qira Oasis. With the increase of groundwater depth, grassland coverage and vegetation NPP decreased. During the period 2008-2015, with the recovery of groundwater level, NPP values of all types of vegetation with different coverages increased. This study will provide a scientific basis for the rational utilization and sustainable management of groundwater resources in the oasis. 展开更多
关键词 net primary productivity Carnegie Ames Stanford Approach groundwater depth land use NDVI Qira Oasis
下载PDF
上一页 1 2 65 下一页 到第
使用帮助 返回顶部