T he ecological footprint of China's provinces is calculated in this pap er. In general, China's development is not sustainable because its ecological footprint is beyond its bio-capacity. The sustainability s...T he ecological footprint of China's provinces is calculated in this pap er. In general, China's development is not sustainable because its ecological footprint is beyond its bio-capacity. The sustainability status of each pr ovince in China is presented. Ulanowicz's development capacity formula w as introduced to discuss the relationship of development and ecological footprin t's diversity. The diversity of ecological impacts is related to the e fficiency with which an economy uses the source and sink services of the environment and, in this view, should be a factor in economic output. Developme nt capacity, calculated from the ecological footprint and its diversity , is used to examine the relationship of economic output with the st ructure of the ecological footprint. China and its provinces are prese nted as a case study to investigate this relationship. The analysis s hows that footprint capacity is significant in predicting economic outp ut. Increasing the ecological footprint's diversity is presented as another way to increase development capacity.展开更多
There are mounting evidences that human consume significant quantities of resources and have a major impact on the environment. Some research indicates that since the 1980s human demands on the biosphere have exceeded...There are mounting evidences that human consume significant quantities of resources and have a major impact on the environment. Some research indicates that since the 1980s human demands on the biosphere have exceeded its regen-errative capacity. One way to solve this problem is to minimize the inappropriate ex-ploitation from environment. This essay wil focus on energy self-sustained project, which is a specific way to reduce energy requirements. Energy self-sustained project refers to that energy production is equal to the amount consumed. Three concepts are quoted in the fol-lowing to assess whether the project achieve zero-energy or not. First, ecological footprint, which provides an indication of the human load on the biosphere, is uti-lized to measure the inputs and outputs of the bioregion, which is also beneficial for defining the potential energy. Another one is life cycle assessment, which evaluates environmental load that relates to the entire life periodic system of a product, is helpful to measure the products used in the energy self sustained project. In addi-tion, net energy, and gross resource abundance, definitions for selection, or hierar-chy of different energy resources, can evaluate the new energy resources in project. Geos Neighbourhood, located in colorado, was planned as the largest net-zero energy neighbourhood in the United States. To meet the energy self sustainability, earth and sun power completely sustain the community's energy needs, and re-place al fossil fuels. Compared with the traditional communities, Geos Neighbour-hood minimize the adverse impact on the environment. As tools for assessment, ecological footprint, life circle assessment, and net energy, are al used to analyse the planning and design principles in the neighbourhood. By the research, the de-sign principles and energy use in Geos Neighbourhood wil be re-examined that whether the zero energy project achieves the reduction of ecological footprint, and energy self sustainability. In addition, life circle assessment wil re-examine the ma-terials used in the community also. Final y, the concept of 'net energy' wil test solar energy and earth power which is the major energy used in Geos Neighbour-hood.展开更多
In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological...In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological footprints can be used to quantitatively evaluate the water consumption of social-economic activities and their influence on the eco-environments.In addition,increase of the water footprint indicates the expansion of artificial oasis,and the influence on the natural oasis could be reflected by the variation of the ecological footprint.This study was conducted to answer a scientific question that what is the quantitative relationship between the expansion of the artificial oasis and the degradation of the natural oasis in the arid environments of Xinjiang,China.Thus,based on the social-economic data,water consumption data and meteorological data during 2001–2015,we calculated the water and ecological footprints to express the human-related pressure exerted on the water resources and arid environments in Xinjiang(including 14 prefectures and cities),and explore the relationship between the water and ecological footprints and its mechanism by using the coupling analysis and Granger causality test.The results show that both the water and ecological footprints of Xinjiang increased significantly during 2001–2015,and the increasing rate of the ecological footprint was much faster than that of the water footprint.The coupling degree between the water and ecological footprints was relatively high at the temporal scale and varied at the spatial scale.Among the 14 prefectures and cities examined in Xinjiang,the greater social-economic development(such as in Karamay and Urumqi)was associated with the lower coupling degree between the two footprints.Increases in the water footprint will cause the ecological footprint to increase,such that a 1-unit increase in the consumption of water resources would lead to 2–3 units of ecological degradation.The quantitative relationship between the increases of the water and ecological footprints,together with the intensities of water consumption both in the natural and artificial oases of Tarim River Basin,have approved the fact that the formation and expansion of 1 unit of the artificial oasis would bring about the degradation of 2 units of the natural oasis.These conclusions not only provide a technical basis for sustainable development in Xinjiang,but also offer a theoretical guide and scientific information that could be used in similar arid areas around the world.展开更多
Ecological footprint's theory and method are used to calculate and analysisthe ecological carrying capacity in Tibet. The results indicate: Tibet ecological footprint (2.1hm^2) keeps higher than countrywide averag...Ecological footprint's theory and method are used to calculate and analysisthe ecological carrying capacity in Tibet. The results indicate: Tibet ecological footprint (2.1hm^2) keeps higher than countrywide average level (1.5 hm^2), and lower than global average level(2.4 hm^2); the result show that Tibet pasture ecological footprint is the most different with otherarea, and woodland is the second; Tibet ecological footprint grows from 1. 25 hm^2 in 1978 to 2.09hm^2 in 2002, which states that life level is improving continuously; GDP (per RMB 10~4 Yuan)ecological footprint reduces from 61. 9 hm^2 in 1978 to 4. 54 hm^2 in 2002, which states resourcesutilized ratio is increasing continuously.展开更多
[ Objective] The aim was to study the ecological footprint and sustainable development in Karst Area. [ Method] By dint of statistical da- ta of Anshun City in 2008, the ecological footprint of Anshun City was calcula...[ Objective] The aim was to study the ecological footprint and sustainable development in Karst Area. [ Method] By dint of statistical da- ta of Anshun City in 2008, the ecological footprint of Anshun City was calculated. The sustainable development of ecological system in Anshun City was analyzed from the angle of balance of supply and demand. [ Result] The per capita ecological capacity was 0.447 8 hm2/cap in 2008, per capi- ta ecological footprint was 2.309 0 hm2/cap, and ecological surplus of deficit was 1.861 2 hm2/cap. It meant the EF of the present region in terms of human activities had already exceeded the benchmark of system ecological carrying capacity. The supply of natural resources can't fully meet people's needs, and land use was unsustainable. The sustainable development of Karst area can be realized through changing people's production and life consumption model, building resources-saving social productive consumption system, depending scientific and technological development, improving production technology, using new technology, improving resources utilization effect and developing recycle economy. [Condusion] The study provided theoretical basis for sustainable development in Karst area.展开更多
The correlation between technological innovation,economic growth,renewable energy,and ecological footprint carries significant policy implications for environmental sustainability.Furthermore,financial inclusion can d...The correlation between technological innovation,economic growth,renewable energy,and ecological footprint carries significant policy implications for environmental sustainability.Furthermore,financial inclusion can drastically affect the technology-climate nexus across different countries and its moderating impacts have received sufficient attention.To do this,this study examined how technological innovation,financial inclusion,economic growth,and renewable energy affected emerging economies’ecological footprint from 1990 to 2019.Additionally,this study also scrutinizes the moderating role of financial inclusion with other regressors on ecological footprint.To account for structural shifts,disguised cointegration,and numerous breaks in panel regression,this study applies advanced panel estimation methods for empirical analysis.The estimated outcomes exhibit that the influence of technical innovation,climate technologies,and renewable energy significantly reduces the ecological footprint levels.Besides,economic growth and financial inclusion significantly increase the ecological footprint levels in the emerging economies.Furthermore,the integration of innovative technology and renewable energy in emerging countries mitigates the adverse effects of financial inclusion by making it easier for creative technologies and reducing ecological footprints.These results show that emerging countries’innovative technology and renewable energy sources should be integrated with financial inclusion to enable longterm mitigation of environmental damages and sustainable growth.Based on these estimated findings,the research recommends that emerging economies should hasten technological innovations along with stronger financial development to curtail ecological concerns without hindering the pace of sustainable economic growth.展开更多
The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource produ...The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.展开更多
The Ecological Footprint (EF), a physical indicator to measure the extent of humanity's use of natural resources, has gained much attention since it was first used by Wackemagel and Rees in 1996. In order to apprai...The Ecological Footprint (EF), a physical indicator to measure the extent of humanity's use of natural resources, has gained much attention since it was first used by Wackemagel and Rees in 1996. In order to appraise land area types with different levels of productiv- ity, they introduced the concept of an equivalence factor. This relates to the average primary biomass productivities of different types of land (i.e. arable land, pasture, forest, water/fishery, built-up land and fossil energy land) to the regional average primary biomass productivity of all land types in a given year. Hence, the equivalence factor is an important parameter in the EF model and it directly affects the reliability of all results. Thus, this article calculates equivalence factors on the national and provincial levels in China based on Net Primary Production (NPP) from MODIS 1 km data in 2008. Firstly, based on the Light Utility Efficiency and CASA model, the NPP of different biologically productive lands of China and of different provinces was calculated. Secondly, China's equivalence factor for 6 land area types was calculated based on NPP: arable land and built-up land has an equivalence factor of 1.71, forest and fossil energy land has a factor of 1.41, pasture has a factor of 0.44 and water/fishery 0.35; Finally, the equivalence factor of 6 land area types in different provinces was also calculated. The NPP of each ecosystem type varies along with the equivalence factor in different provinces. However, the ranking of the equivalence factors in different provinces remain the same, with that of arable land being the largest, and the water/fishery being the smallest.展开更多
The ecological footprint (EF) model has received much attention as an assessment indicator for sustainable development in recent years. Firstly, the temporal changes of domestic timber production, imports and export...The ecological footprint (EF) model has received much attention as an assessment indicator for sustainable development in recent years. Firstly, the temporal changes of domestic timber production, imports and exports in China were analyzed from 1973 to 2003, the analysis results showed an apparent fluctuation in timber production during 1973-1995 but a decreasing trend during 1995-2002, an increasing trend in timber imports since 1995 especially after the implementation of the Natural Forest Protection Project (NFPP), an decreasing trend year by year in timber exports since 1995. Secondly, this paper presented a time series analysis of actual forest area demand in the sustainable yield and production approach in China from 1973 to 2003, which includes both import and export forest area demand. The results showed the actual forest area demand simulated from the sustainable yield approach was slightly higher than that from the production approach during 1978-1988 and a little lower during 1989-2003; however, the actual forest area demands simulated by these two model approaches were larger than calculations that expressed in conventional forest EF. Meanwhile, the results indicated the forestry development in China during 1978-1988 was unsustainable due to overexploitation of forest stocking volumes, and China's forestry moved toward sustainable development since 1989 because forest resources are exploited at lower rates than they are regenerated. However, compared to forestry developed countries, the forestry development capacity in China is still lower. Finally, based on the model results we analyzed the relationships between forestry EF and the key policies, including trade policy, economic policy and forest conservation programs. In addition, several suggestions about reducing forestry EF and enhancing sustainable forestry development in China are given.展开更多
Based on the relative theories and methods of ecological footprint and ecological carrying capacity,and according to practical conditions of Guangdong Province,this paper tried to put forward the determinant standard ...Based on the relative theories and methods of ecological footprint and ecological carrying capacity,and according to practical conditions of Guangdong Province,this paper tried to put forward the determinant standard for ecological compensation through calculating the ecological footprint and ecological carrying capacity of every city in Guangdong Province. The results indicated that the ecological footprint of each city was in the status of deficit and the deficit level decreased gradually from developed regions of Pearl River Delta to the outlying regions. The cities which belonged to development areas of Pearl River Delta needed to pay ecological compensation,such as Guangzhou and Shenzhen and so on. In contrast,the cities which accepted compensation were underdeveloped areas,such as Heyuan and Jieyuan and so on.展开更多
This research was to introduce the characteristics of and countermeasures for ecological compensation. From the analysis of the current situation of ecological compensation, a series of characteristics of ecological c...This research was to introduce the characteristics of and countermeasures for ecological compensation. From the analysis of the current situation of ecological compensation, a series of characteristics of ecological compensation in resource exploitation and economic development were elaborated. The principles and practical issues are complex in ecological compensation, and the corresponding object, entity, financial system of ecological compensation are the keys to set up compensation mechanism, and studying of ecosystem service function and ecological footprint calculation are important ways to quantitatively assess ecological compensation, and are also important foundations for establishing calculation system of green GDP. Advocating the benefit compensation mechanism of ecological economy and enclosing ecological compensation principle are important ways for establishing the new environmental management pattern and manifesting social justice and the ecological civilization ideas. This research proposed some views of and approaches to ecological compensation mechanism for constructing natural resource development and utilization.The establishment of ecological compensation is an important approach to prevent the imbalance of resource allocation, the system guarantee for sustainable development, and the important basis of saving resources.展开更多
Chengdu City is in the period of rapid urbanization and industrialization, and the disturbance derived from human activities on environment is increasing remarkablely in recent 20 years. The pressure on environment, e...Chengdu City is in the period of rapid urbanization and industrialization, and the disturbance derived from human activities on environment is increasing remarkablely in recent 20 years. The pressure on environment, economy and population is also increasing and land use in Chengdu has changed enormously. As struc- ture and function of land ecological system change obviously, sustainable development of land productivity has been an important goal and strategic task from now on, and it is necessary to systematically research land ecological carrying capacity based on ecological footprint. The ecological footprint of Chengdu City in the past ten years was calculated and analyzed from the spatial and temporal aspects according to statistical data from 1998 to 2008, as per ecological footprint method, ecological carrying capacity and the GIS spatial analysis method, and regression analysis method. The ecological footprint and ecological carrying capacity values from 2009 to 2019 in Chengdu City were predicted through calculation results in the past ten years. The results show that the ecological footprint and ecological deficit of land use from 1998 to 2008 increased in Chengdu City. The ecological deficit of land use within the city center was in high levels in the past ten years, and the ecological footprint kept raising, especially in areas, such as Shuangliu, Chongzhou, Qingyang among 9 city areas, 4 counties and 6 districts in Chengdu City. There is fanlike distribution of ecological deficit of land use. Analysis shows that the social and natural ecological system is uneven distribution, which is not in sustainable de- velopment situation. The results of the study show that the economic, social and natural ecological system in Chengdu City is not sustainable, and the ecological foot- print is uneven distribution. The analysis of the dynamic change of land ecological carrying capacity in Chengdu City is very important for city government in the pro- cess of the vigorous development in new Tianfu Xinqu, and redevelopment in the northern part of this city.展开更多
An energy-based ecological footprint model was set up to monitor the sustainable development status of a specific marine system. This model used unit energy value and energy density to convert the consumption into eco...An energy-based ecological footprint model was set up to monitor the sustainable development status of a specific marine system. This model used unit energy value and energy density to convert the consumption into ecological productive areas. It can reflect the utilization degree of resources in the regional development. Then, the quantitative analysis of sustainable development was done by comparing the size of the areas. We defined the concept of energy-based ecological footprint of marine and built energy-based ecological footprint model of marine. Then we applied this model to marine ecological system of Shandong province to evaluate its sustainable development statue. The results showed that the energy-based marine ecological footprint of the marine ecological system in Shandong province was 1.74 × 106 hm^2 in 2010, and the energy-based ecological carrying capacity of this area was 1.60×107 hm^2 per capita. Thus, the marine ecological system of Shandong province has strong sustainability.展开更多
To make clear ecological sustainable development in Hunan Province, biomass resources and the energy consumption indexes of Hunan Province in 2013 were selected, and quantity analysis of the regional ecological consum...To make clear ecological sustainable development in Hunan Province, biomass resources and the energy consumption indexes of Hunan Province in 2013 were selected, and quantity analysis of the regional ecological consumption and the ecological carrying capacity was carried out using the ecological footprint method. The results showed that the net ecological deficit per capita was 1.718 hm2 in 2013 in Hunan Province, which indicated the regional development was beyond the scope of ecological carrying capacity. So, according to the present unsustainable situation, the corresponding development suggestions were put forward.展开更多
文章对CNKI数据库中以“生态足迹”为主题的1273篇核心文献和Web of Science数据库以“Ecological Footprint”为主题词的2146篇核心文献做了全面梳理,并借助Cite Space软件(6.1.6版本)进行可视化分析,根据关键词、作者、研究机构以及...文章对CNKI数据库中以“生态足迹”为主题的1273篇核心文献和Web of Science数据库以“Ecological Footprint”为主题词的2146篇核心文献做了全面梳理,并借助Cite Space软件(6.1.6版本)进行可视化分析,根据关键词、作者、研究机构以及文章被引用次数等具有代表性的因素绘制出知识图谱。结果表明:CNKI发文量先增长后降低,WOS呈现直线上涨,于2021年达到峰值,此后开始下降。在此基础上梳理国内外对于生态足迹的研究脉络和相关进展,对相关热点进行分析,提出对应建议,为后续研究提供一定的参考借鉴。展开更多
Based on the theory of emergy analysis,a modified model of ecological footprint accounting,termed emergetic ecological footprint(EMEF)in contrast to the conventional ecological footprint(EF)model,is formulated and app...Based on the theory of emergy analysis,a modified model of ecological footprint accounting,termed emergetic ecological footprint(EMEF)in contrast to the conventional ecological footprint(EF)model,is formulated and applied to a case study of Jiangsu cropland,China.Comparisons between the EF and the EMEF with respect to grain,cotton,and food oil were outlined.Per capita EF and EMEF of cropland were also presented to depict the resources consumption level by comparing the biocapacity(BC)or emergetic biocapacity(EMBC,a new BC calculation by emergy analysis) of the same area.In the meanwhile,the ecological sustainability index(ESI),a new concept initiated by the authors, was established in the modified model to indicate and compare the sustainability of cropland use at different levels and between different regions.The results from conventional EF showed that per capita EF of the cropland has exceeded its per capita BC in Jiangsu since 1986.In contrast,based on the EMBC,the per capita EMEF exceeded the per capita EMBC 5 years earlier.The ESIs of Jiangsu cropland use were between 0.7 and 0.4 by the conventional method,while the numbers were between 0.7 and 0.3 by the modified one.The fact that the results of the two methods were similar showed that the modified model was reasonable and feasible,although some principles of the EF and EMEF were quite different. Also,according to the realities of Jiangsu cropland use,the results from the modified model were more acceptable.展开更多
Human-environment relationship is a focus of academic researches and an understanding of the rela- tionship is important for making effective policies and decisions. In this study, based on rural household survey data...Human-environment relationship is a focus of academic researches and an understanding of the rela- tionship is important for making effective policies and decisions. In this study, based on rural household survey data of Taibus Banner, Duolun county and Zhengxiangbai Banner in the Inner Mongolia autonomous region of China, we identified the impact of livelihood diversification on ecosystems in these agro-pastoral areas by using the ecological footprint theory and methodology together with the one-way analysis of variance (ANOVA) and correlation analysis methods. In 2011, the total ecological footprint of consumption (EFC) was 0.665 g hm2, and the total ecological footprint of production (EFP) was 2.045 g hm2, which was more than three times the EFC. The ecological footprint of arable land consumption (EFAC) accounted for a large proportion of the EFC, and the ecological footprint of grassland production (EFGP) occupied a large proportion of the EFP. Both the ecological footprint of grassland consumption (EFGC) and EFGP had a significant positive correlation with the income, indicating that income was mainly depended on livestock production and the households with higher incomes consumed more livestock prod- ucts. The full-time farming households (FTFHs) had the highest EFP, ecological footprint of arable land production (EFAP), EFGP and EFGC, followed by the part-time farming households (PTFHs) and non-farming households (NFHs), which indicated that part-time farming and non-farming employment reduced the occupancy and con- sumption of rural households on local ecosystems and natural resources to some extent. When farming households engaged in livestock rearing, both the EFAP and EFAC became smaller, while the EFP, EFC, EFGC and EFGP increased significantly. The differences in ecological footprints among different household groups should be taken into account when making ecosystem conservation policies. Encouraging the laborers who have the advantages of participating in non-farming employment to move out of the rural areas and increasing the diversification of liveli- hoods of rural households are important in reducing the environmental pressures and improving the welfare of households in the study area. Moreover, grassland should be utilized more effectively in the future.展开更多
Sustainable development has become a primary objective for many countries and regions throughout the world now. The ecological footprint (EF) is a kind of concise method of quantifiably measuring the natural capital c...Sustainable development has become a primary objective for many countries and regions throughout the world now. The ecological footprint (EF) is a kind of concise method of quantifiably measuring the natural capital consumption and it can reflect the goal of sustainability. In this paper, the concept, the theory and method of ecological footprint are introduced. On this basis, the study brings forward the method of ecological footprint and capacity prediction. The method is employed for the ecological footprint prediction combining consumption model with population model and the technique is adopted for the ecological capacity (EC) prediction uniting the Geographical Cellular Automata (Geo CA) and Geographic Information System (GIS). The above models and methods are employed to calculate EF and EC in 1995 and 2000 and predict them in 2005 in Hexi Corridor. The result shows that EF is continually increasing, and EC ascended in the anterior 5 years and will descend in the posterior 5 years. This suit of method is of the character of accuracy and speediness.展开更多
The environmental impact caused by local people (ecological footprint of consumption, EFc) and the actual environmental impact that the ecosystem burdens (ecological footprint of production, EFp) in West Jilin Pro...The environmental impact caused by local people (ecological footprint of consumption, EFc) and the actual environmental impact that the ecosystem burdens (ecological footprint of production, EFp) in West Jilin Province, Northeast China from 1986 to 2006 were evaluated by using ecological footprint (EF) method. And the major driving forces of EFc and EFp were analyzed by STIRPAT model. Both EFc and EFp showed increasing trends in 1986-2006, accompanied by decreasing ecological deficits but expanding ecological overshoots. Population (P), GDP per capita (A1), quadratic term of GDP per capita (A2), urbanization (Tα1), and quadratic term of urbanization (Ta2) were important influencing factors of EFc, among which Tα2 and Tα1 were the most dominate driving forces of EFc. A1, A2 and Tα2 were important influencing factors of EFp, among which A2 and A1 were the most dominate driving forces of EFp. In 1986-2006, the classical Environmental Kuznets Curve hypothesis did not exist between A2 and EF (both EFc and EFp), but did between Tα2 and EF. The results indicate that enhancing the urbanization process and diversifying economic sources is one of the most effective ways to reduce the environmental impact of West Jilin Province. Moreover, importance should be attached to improve the eco-efficiency of resource exploitation and consumption.展开更多
This paper presents the detailed results and analyses on the ecological footprints and bio-capacities of the individual cities and the province as a whole for the year 2001, providing a clear picture of sustainability...This paper presents the detailed results and analyses on the ecological footprints and bio-capacities of the individual cities and the province as a whole for the year 2001, providing a clear picture of sustainability for the province. Results show that the ecological footprints of most cities in Liaoning exceeded their respective bio-capacities, incurring high ecological deficits. The ecological deficit of the province as a whole was 1.31 ha/cap. Those cities with resources extraction and/or primary material-making as their major industries constitute the "ecologically black band", whose ecological deficits ranged from 2.45 to 5.23 ha/cap, the highest of all cities in the province. Fossil energy consumption was the major source of footprint amounting to 1.63 ha/cap at the provincial level, taking up 67.3% of the total. For cropland, modest ecological surpluses occurred in Jinzhou, Tieling, Huludao, and Panjin while modest ecological deficits in Dalian, Benxi, Fushun, and Dandong, resulting in an overall surplus for the province. Liaoning had a certain level of surplus in fishing ground (water area), mainly distributed in the coastal cities of Dalian, Panjin, Huludao, Yingkou, Jinzhou, and Dandong. Most cities had a small ecological deficit in pasture and all had a small ecological surplus in forest. The eco-efficiency, expressed as GDP value per hectare of footprint, exhibits high variations among the cities, with the highest (Shenyang) more than 10 times the lowest (Fuxin). Cities with manufacture, high-tech, and better developed service industries had high eco-efficiency, while those with resources extraction, primary material-making, and less developed service industries had low eco-efficiency. Based on the components and geographical distribution of ecological footprint, strategic policy implications are outlined for Liaoning’s development toward a sustainable future.展开更多
基金National Natural Science Foundation of China, No.40235053 No.40201019
文摘T he ecological footprint of China's provinces is calculated in this pap er. In general, China's development is not sustainable because its ecological footprint is beyond its bio-capacity. The sustainability status of each pr ovince in China is presented. Ulanowicz's development capacity formula w as introduced to discuss the relationship of development and ecological footprin t's diversity. The diversity of ecological impacts is related to the e fficiency with which an economy uses the source and sink services of the environment and, in this view, should be a factor in economic output. Developme nt capacity, calculated from the ecological footprint and its diversity , is used to examine the relationship of economic output with the st ructure of the ecological footprint. China and its provinces are prese nted as a case study to investigate this relationship. The analysis s hows that footprint capacity is significant in predicting economic outp ut. Increasing the ecological footprint's diversity is presented as another way to increase development capacity.
文摘There are mounting evidences that human consume significant quantities of resources and have a major impact on the environment. Some research indicates that since the 1980s human demands on the biosphere have exceeded its regen-errative capacity. One way to solve this problem is to minimize the inappropriate ex-ploitation from environment. This essay wil focus on energy self-sustained project, which is a specific way to reduce energy requirements. Energy self-sustained project refers to that energy production is equal to the amount consumed. Three concepts are quoted in the fol-lowing to assess whether the project achieve zero-energy or not. First, ecological footprint, which provides an indication of the human load on the biosphere, is uti-lized to measure the inputs and outputs of the bioregion, which is also beneficial for defining the potential energy. Another one is life cycle assessment, which evaluates environmental load that relates to the entire life periodic system of a product, is helpful to measure the products used in the energy self sustained project. In addi-tion, net energy, and gross resource abundance, definitions for selection, or hierar-chy of different energy resources, can evaluate the new energy resources in project. Geos Neighbourhood, located in colorado, was planned as the largest net-zero energy neighbourhood in the United States. To meet the energy self sustainability, earth and sun power completely sustain the community's energy needs, and re-place al fossil fuels. Compared with the traditional communities, Geos Neighbour-hood minimize the adverse impact on the environment. As tools for assessment, ecological footprint, life circle assessment, and net energy, are al used to analyse the planning and design principles in the neighbourhood. By the research, the de-sign principles and energy use in Geos Neighbourhood wil be re-examined that whether the zero energy project achieves the reduction of ecological footprint, and energy self sustainability. In addition, life circle assessment wil re-examine the ma-terials used in the community also. Final y, the concept of 'net energy' wil test solar energy and earth power which is the major energy used in Geos Neighbour-hood.
基金supported by the National Key Technology Research and Development Program of China(2017YFC0404301,2016YFA0601602)the National Natural Science Foundation of China(51479209,51609260)
文摘In arid areas,ecological degradation aroused by over-exploitation of fresh water,expansion of artificial oasis and shrinkage of natural oasis,has drawn attention of many scholars and officials.The water and ecological footprints can be used to quantitatively evaluate the water consumption of social-economic activities and their influence on the eco-environments.In addition,increase of the water footprint indicates the expansion of artificial oasis,and the influence on the natural oasis could be reflected by the variation of the ecological footprint.This study was conducted to answer a scientific question that what is the quantitative relationship between the expansion of the artificial oasis and the degradation of the natural oasis in the arid environments of Xinjiang,China.Thus,based on the social-economic data,water consumption data and meteorological data during 2001–2015,we calculated the water and ecological footprints to express the human-related pressure exerted on the water resources and arid environments in Xinjiang(including 14 prefectures and cities),and explore the relationship between the water and ecological footprints and its mechanism by using the coupling analysis and Granger causality test.The results show that both the water and ecological footprints of Xinjiang increased significantly during 2001–2015,and the increasing rate of the ecological footprint was much faster than that of the water footprint.The coupling degree between the water and ecological footprints was relatively high at the temporal scale and varied at the spatial scale.Among the 14 prefectures and cities examined in Xinjiang,the greater social-economic development(such as in Karamay and Urumqi)was associated with the lower coupling degree between the two footprints.Increases in the water footprint will cause the ecological footprint to increase,such that a 1-unit increase in the consumption of water resources would lead to 2–3 units of ecological degradation.The quantitative relationship between the increases of the water and ecological footprints,together with the intensities of water consumption both in the natural and artificial oases of Tarim River Basin,have approved the fact that the formation and expansion of 1 unit of the artificial oasis would bring about the degradation of 2 units of the natural oasis.These conclusions not only provide a technical basis for sustainable development in Xinjiang,but also offer a theoretical guide and scientific information that could be used in similar arid areas around the world.
文摘Ecological footprint's theory and method are used to calculate and analysisthe ecological carrying capacity in Tibet. The results indicate: Tibet ecological footprint (2.1hm^2) keeps higher than countrywide average level (1.5 hm^2), and lower than global average level(2.4 hm^2); the result show that Tibet pasture ecological footprint is the most different with otherarea, and woodland is the second; Tibet ecological footprint grows from 1. 25 hm^2 in 1978 to 2.09hm^2 in 2002, which states that life level is improving continuously; GDP (per RMB 10~4 Yuan)ecological footprint reduces from 61. 9 hm^2 in 1978 to 4. 54 hm^2 in 2002, which states resourcesutilized ratio is increasing continuously.
基金Supported by Natural Science Youth Project of Educational Bureau in Guizhou Province(2008085)
文摘[ Objective] The aim was to study the ecological footprint and sustainable development in Karst Area. [ Method] By dint of statistical da- ta of Anshun City in 2008, the ecological footprint of Anshun City was calculated. The sustainable development of ecological system in Anshun City was analyzed from the angle of balance of supply and demand. [ Result] The per capita ecological capacity was 0.447 8 hm2/cap in 2008, per capi- ta ecological footprint was 2.309 0 hm2/cap, and ecological surplus of deficit was 1.861 2 hm2/cap. It meant the EF of the present region in terms of human activities had already exceeded the benchmark of system ecological carrying capacity. The supply of natural resources can't fully meet people's needs, and land use was unsustainable. The sustainable development of Karst area can be realized through changing people's production and life consumption model, building resources-saving social productive consumption system, depending scientific and technological development, improving production technology, using new technology, improving resources utilization effect and developing recycle economy. [Condusion] The study provided theoretical basis for sustainable development in Karst area.
文摘The correlation between technological innovation,economic growth,renewable energy,and ecological footprint carries significant policy implications for environmental sustainability.Furthermore,financial inclusion can drastically affect the technology-climate nexus across different countries and its moderating impacts have received sufficient attention.To do this,this study examined how technological innovation,financial inclusion,economic growth,and renewable energy affected emerging economies’ecological footprint from 1990 to 2019.Additionally,this study also scrutinizes the moderating role of financial inclusion with other regressors on ecological footprint.To account for structural shifts,disguised cointegration,and numerous breaks in panel regression,this study applies advanced panel estimation methods for empirical analysis.The estimated outcomes exhibit that the influence of technical innovation,climate technologies,and renewable energy significantly reduces the ecological footprint levels.Besides,economic growth and financial inclusion significantly increase the ecological footprint levels in the emerging economies.Furthermore,the integration of innovative technology and renewable energy in emerging countries mitigates the adverse effects of financial inclusion by making it easier for creative technologies and reducing ecological footprints.These results show that emerging countries’innovative technology and renewable energy sources should be integrated with financial inclusion to enable longterm mitigation of environmental damages and sustainable growth.Based on these estimated findings,the research recommends that emerging economies should hasten technological innovations along with stronger financial development to curtail ecological concerns without hindering the pace of sustainable economic growth.
基金Sponsored by Talent Project of Tongling University(2021tlxyrc27).
文摘The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.
文摘The Ecological Footprint (EF), a physical indicator to measure the extent of humanity's use of natural resources, has gained much attention since it was first used by Wackemagel and Rees in 1996. In order to appraise land area types with different levels of productiv- ity, they introduced the concept of an equivalence factor. This relates to the average primary biomass productivities of different types of land (i.e. arable land, pasture, forest, water/fishery, built-up land and fossil energy land) to the regional average primary biomass productivity of all land types in a given year. Hence, the equivalence factor is an important parameter in the EF model and it directly affects the reliability of all results. Thus, this article calculates equivalence factors on the national and provincial levels in China based on Net Primary Production (NPP) from MODIS 1 km data in 2008. Firstly, based on the Light Utility Efficiency and CASA model, the NPP of different biologically productive lands of China and of different provinces was calculated. Secondly, China's equivalence factor for 6 land area types was calculated based on NPP: arable land and built-up land has an equivalence factor of 1.71, forest and fossil energy land has a factor of 1.41, pasture has a factor of 0.44 and water/fishery 0.35; Finally, the equivalence factor of 6 land area types in different provinces was also calculated. The NPP of each ecosystem type varies along with the equivalence factor in different provinces. However, the ranking of the equivalence factors in different provinces remain the same, with that of arable land being the largest, and the water/fishery being the smallest.
基金This paper was supported by National Natural Science Foundation of China (70373044&30470302) and Rejuvenation Northeast Program of CAS
文摘The ecological footprint (EF) model has received much attention as an assessment indicator for sustainable development in recent years. Firstly, the temporal changes of domestic timber production, imports and exports in China were analyzed from 1973 to 2003, the analysis results showed an apparent fluctuation in timber production during 1973-1995 but a decreasing trend during 1995-2002, an increasing trend in timber imports since 1995 especially after the implementation of the Natural Forest Protection Project (NFPP), an decreasing trend year by year in timber exports since 1995. Secondly, this paper presented a time series analysis of actual forest area demand in the sustainable yield and production approach in China from 1973 to 2003, which includes both import and export forest area demand. The results showed the actual forest area demand simulated from the sustainable yield approach was slightly higher than that from the production approach during 1978-1988 and a little lower during 1989-2003; however, the actual forest area demands simulated by these two model approaches were larger than calculations that expressed in conventional forest EF. Meanwhile, the results indicated the forestry development in China during 1978-1988 was unsustainable due to overexploitation of forest stocking volumes, and China's forestry moved toward sustainable development since 1989 because forest resources are exploited at lower rates than they are regenerated. However, compared to forestry developed countries, the forestry development capacity in China is still lower. Finally, based on the model results we analyzed the relationships between forestry EF and the key policies, including trade policy, economic policy and forest conservation programs. In addition, several suggestions about reducing forestry EF and enhancing sustainable forestry development in China are given.
基金Supported by Ecological Compensation and Policy Study Projects of Guangdong Environmental Protection Department
文摘Based on the relative theories and methods of ecological footprint and ecological carrying capacity,and according to practical conditions of Guangdong Province,this paper tried to put forward the determinant standard for ecological compensation through calculating the ecological footprint and ecological carrying capacity of every city in Guangdong Province. The results indicated that the ecological footprint of each city was in the status of deficit and the deficit level decreased gradually from developed regions of Pearl River Delta to the outlying regions. The cities which belonged to development areas of Pearl River Delta needed to pay ecological compensation,such as Guangzhou and Shenzhen and so on. In contrast,the cities which accepted compensation were underdeveloped areas,such as Heyuan and Jieyuan and so on.
基金Supported by National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science&Technology(2006BAD26B0902)National Program on Key Basic Research Project(973program)(2006CB705809)+2 种基金Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX-YW-09)Program of Soft Sciences from China Meteorological Administration(QR2008-39)Scientific Re-search Fund of Nanjing University of Information Science and Technology(20070105)~~
文摘This research was to introduce the characteristics of and countermeasures for ecological compensation. From the analysis of the current situation of ecological compensation, a series of characteristics of ecological compensation in resource exploitation and economic development were elaborated. The principles and practical issues are complex in ecological compensation, and the corresponding object, entity, financial system of ecological compensation are the keys to set up compensation mechanism, and studying of ecosystem service function and ecological footprint calculation are important ways to quantitatively assess ecological compensation, and are also important foundations for establishing calculation system of green GDP. Advocating the benefit compensation mechanism of ecological economy and enclosing ecological compensation principle are important ways for establishing the new environmental management pattern and manifesting social justice and the ecological civilization ideas. This research proposed some views of and approaches to ecological compensation mechanism for constructing natural resource development and utilization.The establishment of ecological compensation is an important approach to prevent the imbalance of resource allocation, the system guarantee for sustainable development, and the important basis of saving resources.
基金Supported by National High-tech R&D Program of China(863Program)(2009AA12Z-140)National Natural Science Foundation of China(40771144,40575035)Scientific Research Foundation of Sichuan Normal University(SXK11002)~~
文摘Chengdu City is in the period of rapid urbanization and industrialization, and the disturbance derived from human activities on environment is increasing remarkablely in recent 20 years. The pressure on environment, economy and population is also increasing and land use in Chengdu has changed enormously. As struc- ture and function of land ecological system change obviously, sustainable development of land productivity has been an important goal and strategic task from now on, and it is necessary to systematically research land ecological carrying capacity based on ecological footprint. The ecological footprint of Chengdu City in the past ten years was calculated and analyzed from the spatial and temporal aspects according to statistical data from 1998 to 2008, as per ecological footprint method, ecological carrying capacity and the GIS spatial analysis method, and regression analysis method. The ecological footprint and ecological carrying capacity values from 2009 to 2019 in Chengdu City were predicted through calculation results in the past ten years. The results show that the ecological footprint and ecological deficit of land use from 1998 to 2008 increased in Chengdu City. The ecological deficit of land use within the city center was in high levels in the past ten years, and the ecological footprint kept raising, especially in areas, such as Shuangliu, Chongzhou, Qingyang among 9 city areas, 4 counties and 6 districts in Chengdu City. There is fanlike distribution of ecological deficit of land use. Analysis shows that the social and natural ecological system is uneven distribution, which is not in sustainable de- velopment situation. The results of the study show that the economic, social and natural ecological system in Chengdu City is not sustainable, and the ecological foot- print is uneven distribution. The analysis of the dynamic change of land ecological carrying capacity in Chengdu City is very important for city government in the pro- cess of the vigorous development in new Tianfu Xinqu, and redevelopment in the northern part of this city.
文摘An energy-based ecological footprint model was set up to monitor the sustainable development status of a specific marine system. This model used unit energy value and energy density to convert the consumption into ecological productive areas. It can reflect the utilization degree of resources in the regional development. Then, the quantitative analysis of sustainable development was done by comparing the size of the areas. We defined the concept of energy-based ecological footprint of marine and built energy-based ecological footprint model of marine. Then we applied this model to marine ecological system of Shandong province to evaluate its sustainable development statue. The results showed that the energy-based marine ecological footprint of the marine ecological system in Shandong province was 1.74 × 106 hm^2 in 2010, and the energy-based ecological carrying capacity of this area was 1.60×107 hm^2 per capita. Thus, the marine ecological system of Shandong province has strong sustainability.
基金Supported by National Agricultural Zoning Office Program(06162130111242027)~~
文摘To make clear ecological sustainable development in Hunan Province, biomass resources and the energy consumption indexes of Hunan Province in 2013 were selected, and quantity analysis of the regional ecological consumption and the ecological carrying capacity was carried out using the ecological footprint method. The results showed that the net ecological deficit per capita was 1.718 hm2 in 2013 in Hunan Province, which indicated the regional development was beyond the scope of ecological carrying capacity. So, according to the present unsustainable situation, the corresponding development suggestions were put forward.
文摘文章对CNKI数据库中以“生态足迹”为主题的1273篇核心文献和Web of Science数据库以“Ecological Footprint”为主题词的2146篇核心文献做了全面梳理,并借助Cite Space软件(6.1.6版本)进行可视化分析,根据关键词、作者、研究机构以及文章被引用次数等具有代表性的因素绘制出知识图谱。结果表明:CNKI发文量先增长后降低,WOS呈现直线上涨,于2021年达到峰值,此后开始下降。在此基础上梳理国内外对于生态足迹的研究脉络和相关进展,对相关热点进行分析,提出对应建议,为后续研究提供一定的参考借鉴。
基金the National Natural Science Foundation of China(No.40401059)the Natural Science Foundation of the Education Department of Jiangsu Province(No.07KJD170123)the Natural Science Foundation of Nanjing Xiaozhuang University(No.2007NXY06)
文摘Based on the theory of emergy analysis,a modified model of ecological footprint accounting,termed emergetic ecological footprint(EMEF)in contrast to the conventional ecological footprint(EF)model,is formulated and applied to a case study of Jiangsu cropland,China.Comparisons between the EF and the EMEF with respect to grain,cotton,and food oil were outlined.Per capita EF and EMEF of cropland were also presented to depict the resources consumption level by comparing the biocapacity(BC)or emergetic biocapacity(EMBC,a new BC calculation by emergy analysis) of the same area.In the meanwhile,the ecological sustainability index(ESI),a new concept initiated by the authors, was established in the modified model to indicate and compare the sustainability of cropland use at different levels and between different regions.The results from conventional EF showed that per capita EF of the cropland has exceeded its per capita BC in Jiangsu since 1986.In contrast,based on the EMBC,the per capita EMEF exceeded the per capita EMBC 5 years earlier.The ESIs of Jiangsu cropland use were between 0.7 and 0.4 by the conventional method,while the numbers were between 0.7 and 0.3 by the modified one.The fact that the results of the two methods were similar showed that the modified model was reasonable and feasible,although some principles of the EF and EMEF were quite different. Also,according to the realities of Jiangsu cropland use,the results from the modified model were more acceptable.
基金supported by the National Natural Science Foundation of China (41161140352, 41471092)
文摘Human-environment relationship is a focus of academic researches and an understanding of the rela- tionship is important for making effective policies and decisions. In this study, based on rural household survey data of Taibus Banner, Duolun county and Zhengxiangbai Banner in the Inner Mongolia autonomous region of China, we identified the impact of livelihood diversification on ecosystems in these agro-pastoral areas by using the ecological footprint theory and methodology together with the one-way analysis of variance (ANOVA) and correlation analysis methods. In 2011, the total ecological footprint of consumption (EFC) was 0.665 g hm2, and the total ecological footprint of production (EFP) was 2.045 g hm2, which was more than three times the EFC. The ecological footprint of arable land consumption (EFAC) accounted for a large proportion of the EFC, and the ecological footprint of grassland production (EFGP) occupied a large proportion of the EFP. Both the ecological footprint of grassland consumption (EFGC) and EFGP had a significant positive correlation with the income, indicating that income was mainly depended on livestock production and the households with higher incomes consumed more livestock prod- ucts. The full-time farming households (FTFHs) had the highest EFP, ecological footprint of arable land production (EFAP), EFGP and EFGC, followed by the part-time farming households (PTFHs) and non-farming households (NFHs), which indicated that part-time farming and non-farming employment reduced the occupancy and con- sumption of rural households on local ecosystems and natural resources to some extent. When farming households engaged in livestock rearing, both the EFAP and EFAC became smaller, while the EFP, EFC, EFGC and EFGP increased significantly. The differences in ecological footprints among different household groups should be taken into account when making ecosystem conservation policies. Encouraging the laborers who have the advantages of participating in non-farming employment to move out of the rural areas and increasing the diversification of liveli- hoods of rural households are important in reducing the environmental pressures and improving the welfare of households in the study area. Moreover, grassland should be utilized more effectively in the future.
基金Knowledge Innovation Project of CAS No.KZCX-10-09+1 种基金 Project of Office of the Leading Group for Western Region Development of the State Council No.[2002]11
文摘Sustainable development has become a primary objective for many countries and regions throughout the world now. The ecological footprint (EF) is a kind of concise method of quantifiably measuring the natural capital consumption and it can reflect the goal of sustainability. In this paper, the concept, the theory and method of ecological footprint are introduced. On this basis, the study brings forward the method of ecological footprint and capacity prediction. The method is employed for the ecological footprint prediction combining consumption model with population model and the technique is adopted for the ecological capacity (EC) prediction uniting the Geographical Cellular Automata (Geo CA) and Geographic Information System (GIS). The above models and methods are employed to calculate EF and EC in 1995 and 2000 and predict them in 2005 in Hexi Corridor. The result shows that EF is continually increasing, and EC ascended in the anterior 5 years and will descend in the posterior 5 years. This suit of method is of the character of accuracy and speediness.
基金Under the auspices of Major State Basic Research Development Program of China(No.2004CB418507)
文摘The environmental impact caused by local people (ecological footprint of consumption, EFc) and the actual environmental impact that the ecosystem burdens (ecological footprint of production, EFp) in West Jilin Province, Northeast China from 1986 to 2006 were evaluated by using ecological footprint (EF) method. And the major driving forces of EFc and EFp were analyzed by STIRPAT model. Both EFc and EFp showed increasing trends in 1986-2006, accompanied by decreasing ecological deficits but expanding ecological overshoots. Population (P), GDP per capita (A1), quadratic term of GDP per capita (A2), urbanization (Tα1), and quadratic term of urbanization (Ta2) were important influencing factors of EFc, among which Tα2 and Tα1 were the most dominate driving forces of EFc. A1, A2 and Tα2 were important influencing factors of EFp, among which A2 and A1 were the most dominate driving forces of EFp. In 1986-2006, the classical Environmental Kuznets Curve hypothesis did not exist between A2 and EF (both EFc and EFp), but did between Tα2 and EF. The results indicate that enhancing the urbanization process and diversifying economic sources is one of the most effective ways to reduce the environmental impact of West Jilin Province. Moreover, importance should be attached to improve the eco-efficiency of resource exploitation and consumption.
基金Excellence midlife and youth teacher foundation of Ministry of Education No.1711
文摘This paper presents the detailed results and analyses on the ecological footprints and bio-capacities of the individual cities and the province as a whole for the year 2001, providing a clear picture of sustainability for the province. Results show that the ecological footprints of most cities in Liaoning exceeded their respective bio-capacities, incurring high ecological deficits. The ecological deficit of the province as a whole was 1.31 ha/cap. Those cities with resources extraction and/or primary material-making as their major industries constitute the "ecologically black band", whose ecological deficits ranged from 2.45 to 5.23 ha/cap, the highest of all cities in the province. Fossil energy consumption was the major source of footprint amounting to 1.63 ha/cap at the provincial level, taking up 67.3% of the total. For cropland, modest ecological surpluses occurred in Jinzhou, Tieling, Huludao, and Panjin while modest ecological deficits in Dalian, Benxi, Fushun, and Dandong, resulting in an overall surplus for the province. Liaoning had a certain level of surplus in fishing ground (water area), mainly distributed in the coastal cities of Dalian, Panjin, Huludao, Yingkou, Jinzhou, and Dandong. Most cities had a small ecological deficit in pasture and all had a small ecological surplus in forest. The eco-efficiency, expressed as GDP value per hectare of footprint, exhibits high variations among the cities, with the highest (Shenyang) more than 10 times the lowest (Fuxin). Cities with manufacture, high-tech, and better developed service industries had high eco-efficiency, while those with resources extraction, primary material-making, and less developed service industries had low eco-efficiency. Based on the components and geographical distribution of ecological footprint, strategic policy implications are outlined for Liaoning’s development toward a sustainable future.