The study conducted at Ndiebene Gandiol 1 school in Senegal has unveiled serious environmental and public health challenges. The wastewater analysis revealed high levels of Biochemical Oxygen Demand (BOD5), Chemical O...The study conducted at Ndiebene Gandiol 1 school in Senegal has unveiled serious environmental and public health challenges. The wastewater analysis revealed high levels of Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and fecal coliforms, signaling potential risks to the well-being of students and staff. This situation mirrors a wider issue in rural educational settings, where inadequate sanitation persists. Intensive wastewater treatment options are known for their effectiveness against high pollutant loads but are resource-intensive in both energy and cost. Conversely, extensive treatment systems, while requiring more land, provide a sustainable alternative by harnessing natural processes for pollutant removal. The research suggests a hybrid treatment approach could serve the school’s needs, balancing the robust capabilities of intensive methods with the ecological benefits of extensive systems. Such a solution would need to be tailored to the specific environmental, financial, and logistical context of the school, based on comprehensive feasibility studies and stakeholder engagement. This study’s findings underscore the urgency of addressing sanitation in schools, as it is intrinsically linked to the health and academic success of students. Quick, effective, and long-term strategies are vital to secure a healthier and more prosperous future for the youth. With proper implementation, the school can transform its sanitation facilities, setting a precedent for rural educational institutions in Senegal and similar contexts globally.展开更多
[Objectives] By reasonable water distribution and air supply to soil, soil water permeability is maintained, and the nutrient conditions of degrading bacteria in soil are improved to effectively prevent soil clogging....[Objectives] By reasonable water distribution and air supply to soil, soil water permeability is maintained, and the nutrient conditions of degrading bacteria in soil are improved to effectively prevent soil clogging. [Methods] Through the innovation and improvement of traditional soil sewage treatment technology, the physical, chemical and biological characteristics of soil for sewage purification are utilized to enhance the pollutant decomposition ability of soil microorganisms and maintain soil water permeability.[Results] It has no secondary pollution, and can effectively remove pollutants such as COD_(Cr), TN, TP, NH_3-N, etc. in sewage. [Conclusions] The operation and maintenance cost is low, and the land can be reused, while water and nutrients can be restored to the land.展开更多
The treatment amount of wastewater is restricted to a small percentage in China. One of thereasons for that is the shortage of funds. Therefore , developing the technology of cost-effective , low energy-consuming and ...The treatment amount of wastewater is restricted to a small percentage in China. One of thereasons for that is the shortage of funds. Therefore , developing the technology of cost-effective , low energy-consuming and high efficiency is one of the important way to speed up the steps of wastewater treatment.This paper elucidated the principal and charactertics of the resourceful ecological treatment of wastewater. Asuccessful example of resourceful ecological land treatment of wastewater was given. The key points and therelative policies concerning the further development of resourceful ecological treatment of wastewater as asets of technologies have been suggested.展开更多
This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development o...This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development of this technology in the world was briefly reviewed and the distinction between land treatment and conventional wastewater irrigation was discussed in details. The fundamental characteristics and functions as well as the integrity and compatibility of this ecological engineering were also summarized. It was finally concluded that this technology for wastewater treatment has broad prospects of application in China.展开更多
A Natural Ecological Wastewater Treatment System (NEWTS) is usually built on natural terrain with necessary topography modification to improve water flowing route and pattern, and then the topography modified NEWTS ...A Natural Ecological Wastewater Treatment System (NEWTS) is usually built on natural terrain with necessary topography modification to improve water flowing route and pattern, and then the topography modified NEWTS should also have a reasonable water storage volume and hydraulic retention time so as to achieve the anticipated water purification effect. In this study, the dynamic mesh technique based on the finite element method and element storativity coefficients was presented to develop a two-dimensional hydrodynamic and water quality model, which was used to optimize the design of NEWTS under the dynamic land-water boundary due to various water storage volume. The models were employed in the optimized design of NEWTS from a large abandoned coal mine, which purifies the polluted water flowing into a large water storage lake, as part of the East Route South-to-North Water Transfer Project in China. Specifically, the natural topography modification scheme was presented, and further, a reasonable water storage volume and hydraulic residence time was obtained, based on the reasonable estimation of roughness coefficient and pollutant removal rate of the NEWTS with phragmites communis.展开更多
Ecological municipal solid waste (MSW) treatment systems are complex systems engineering concerning with multiple objectives and hierarchical levels. By combining an extension method with fuzzy logic theory, this pape...Ecological municipal solid waste (MSW) treatment systems are complex systems engineering concerning with multiple objectives and hierarchical levels. By combining an extension method with fuzzy logic theory, this paper investigated key technologies required by the comprehensive evaluation of ecological health. The method includes the construction of an evaluation system, quantification of evaluation indices, development of a matter-element model, development of an extension evaluation method, and assignment of a blended weight that combines subjectively and objectively estimated weights. This approach was used to develop a comprehensive model for evaluating the ecological health of an ecological treatment system for MSW. The model was then applied to a case study, and the results demonstrated that the model is a reasonable and effective.展开更多
Based on the experiments of utilization of garlic processing wastewater in a lotus pond, this study demonstrates that lotus pond wetlands have a remarkable ability to remove organic pollutants and decrease chemical ox...Based on the experiments of utilization of garlic processing wastewater in a lotus pond, this study demonstrates that lotus pond wetlands have a remarkable ability to remove organic pollutants and decrease chemical oxygen demand (CODCr), biochemical oxygen demand (BOD5), and suspended substances (SS) in garlic processing wastewater. Results also show evident effects of lotus roots on absorption of NH3-N. The pH value in a lotus pond with wastewater discharged was relatively stable. The water quality in the lotus pond reached the class Ⅱ emission standard, according to the Integrated Wastewater Discharge Standard (GB8978-1996), seven days after pretreated garlic processing wastewater had been discharged into the lotus pond. Garlic processing wastewater irrigation does not produce pollution in the pond sediment and has no negative effect on the growth of lotus roots. Due to utilization of garlic processing wastewater, the output of lotus roots increased by 3.0% to 8.3%, and the quality of lotus roots was improved. Therefore, better purification and utilization results can be achieved.展开更多
Widely application of CWs (Constructed Wetlands) in domestic wastewater treatment of China is developing wetlands into a multi-function wetland system. Wetland center in CAMIP (Changshu Advanced Materials Industria...Widely application of CWs (Constructed Wetlands) in domestic wastewater treatment of China is developing wetlands into a multi-function wetland system. Wetland center in CAMIP (Changshu Advanced Materials Industrial Park) (Suzhou, Jiangsu Province, China) successfully improved tail water quality to level IV of Environment Quality Standards for Surface Water (GB3838-2002) by the combination of different CW steps and achieved water reuse in CAMIP for industrial purpose. Different from traditional tail water advanced treatment, wetland center is designed under the principle of combining landscape and ecological treatment technology. Since this center started running, the removal rate of TN (Total Nitrogen), NH3-N, TP (Total Phosphorus) and COD (Chemical Oxygen Demand) reaches 87%, 91%, 44% and 60% respectively. Also, 2,038,000 m^3 industrial water reuse in 2015 and 2016 was achieved; emission reduction on COD, NH3-N and TN reached 100 t, 7.2 t and 15.2 t; an ecological garden that combines ecological wastewater treatment, wetland landscape, habitat renovation and educational functions was created.展开更多
In this paper,the water quality of the Xixi Wetland was evaluated and the characteristics of water pollution were described according to the survey data.Based on the status of water quality and its functional requirem...In this paper,the water quality of the Xixi Wetland was evaluated and the characteristics of water pollution were described according to the survey data.Based on the status of water quality and its functional requirements as an urban wetland,biological-ecological countermeasures were suggested.The experimental use of ecological technologies,such as artificial wetlands,ecological aquiculture and artificial floating island,were done in several fish ponds in the Xixi Wetland.Water monitoring results show that the quality of the treated water has improved significantly and the measures to purify the eutrophic water in the wetland have been effective.展开更多
文摘The study conducted at Ndiebene Gandiol 1 school in Senegal has unveiled serious environmental and public health challenges. The wastewater analysis revealed high levels of Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and fecal coliforms, signaling potential risks to the well-being of students and staff. This situation mirrors a wider issue in rural educational settings, where inadequate sanitation persists. Intensive wastewater treatment options are known for their effectiveness against high pollutant loads but are resource-intensive in both energy and cost. Conversely, extensive treatment systems, while requiring more land, provide a sustainable alternative by harnessing natural processes for pollutant removal. The research suggests a hybrid treatment approach could serve the school’s needs, balancing the robust capabilities of intensive methods with the ecological benefits of extensive systems. Such a solution would need to be tailored to the specific environmental, financial, and logistical context of the school, based on comprehensive feasibility studies and stakeholder engagement. This study’s findings underscore the urgency of addressing sanitation in schools, as it is intrinsically linked to the health and academic success of students. Quick, effective, and long-term strategies are vital to secure a healthier and more prosperous future for the youth. With proper implementation, the school can transform its sanitation facilities, setting a precedent for rural educational institutions in Senegal and similar contexts globally.
文摘[Objectives] By reasonable water distribution and air supply to soil, soil water permeability is maintained, and the nutrient conditions of degrading bacteria in soil are improved to effectively prevent soil clogging. [Methods] Through the innovation and improvement of traditional soil sewage treatment technology, the physical, chemical and biological characteristics of soil for sewage purification are utilized to enhance the pollutant decomposition ability of soil microorganisms and maintain soil water permeability.[Results] It has no secondary pollution, and can effectively remove pollutants such as COD_(Cr), TN, TP, NH_3-N, etc. in sewage. [Conclusions] The operation and maintenance cost is low, and the land can be reused, while water and nutrients can be restored to the land.
文摘The treatment amount of wastewater is restricted to a small percentage in China. One of thereasons for that is the shortage of funds. Therefore , developing the technology of cost-effective , low energy-consuming and high efficiency is one of the important way to speed up the steps of wastewater treatment.This paper elucidated the principal and charactertics of the resourceful ecological treatment of wastewater. Asuccessful example of resourceful ecological land treatment of wastewater was given. The key points and therelative policies concerning the further development of resourceful ecological treatment of wastewater as asets of technologies have been suggested.
文摘This paper elucidated the necessity and possibility of developing the technology of land treatment on the basis of the analysis of shortage and pollution status of water resources in China.The historical development of this technology in the world was briefly reviewed and the distinction between land treatment and conventional wastewater irrigation was discussed in details. The fundamental characteristics and functions as well as the integrity and compatibility of this ecological engineering were also summarized. It was finally concluded that this technology for wastewater treatment has broad prospects of application in China.
基金supported by the Key Program on the S and T for the Pollution Control and Treatment of Water Bodies (Grant Nos.2009ZX07210-008,2009ZX07316-005)the Science and Technology Commission of Shanghai Municipal People's Government (Grant No.072312050)
文摘A Natural Ecological Wastewater Treatment System (NEWTS) is usually built on natural terrain with necessary topography modification to improve water flowing route and pattern, and then the topography modified NEWTS should also have a reasonable water storage volume and hydraulic retention time so as to achieve the anticipated water purification effect. In this study, the dynamic mesh technique based on the finite element method and element storativity coefficients was presented to develop a two-dimensional hydrodynamic and water quality model, which was used to optimize the design of NEWTS under the dynamic land-water boundary due to various water storage volume. The models were employed in the optimized design of NEWTS from a large abandoned coal mine, which purifies the polluted water flowing into a large water storage lake, as part of the East Route South-to-North Water Transfer Project in China. Specifically, the natural topography modification scheme was presented, and further, a reasonable water storage volume and hydraulic residence time was obtained, based on the reasonable estimation of roughness coefficient and pollutant removal rate of the NEWTS with phragmites communis.
文摘Ecological municipal solid waste (MSW) treatment systems are complex systems engineering concerning with multiple objectives and hierarchical levels. By combining an extension method with fuzzy logic theory, this paper investigated key technologies required by the comprehensive evaluation of ecological health. The method includes the construction of an evaluation system, quantification of evaluation indices, development of a matter-element model, development of an extension evaluation method, and assignment of a blended weight that combines subjectively and objectively estimated weights. This approach was used to develop a comprehensive model for evaluating the ecological health of an ecological treatment system for MSW. The model was then applied to a case study, and the results demonstrated that the model is a reasonable and effective.
基金supported by the Key Project of Environmental Science and Technology of Shandong Province(Grant No.2006003-2)
文摘Based on the experiments of utilization of garlic processing wastewater in a lotus pond, this study demonstrates that lotus pond wetlands have a remarkable ability to remove organic pollutants and decrease chemical oxygen demand (CODCr), biochemical oxygen demand (BOD5), and suspended substances (SS) in garlic processing wastewater. Results also show evident effects of lotus roots on absorption of NH3-N. The pH value in a lotus pond with wastewater discharged was relatively stable. The water quality in the lotus pond reached the class Ⅱ emission standard, according to the Integrated Wastewater Discharge Standard (GB8978-1996), seven days after pretreated garlic processing wastewater had been discharged into the lotus pond. Garlic processing wastewater irrigation does not produce pollution in the pond sediment and has no negative effect on the growth of lotus roots. Due to utilization of garlic processing wastewater, the output of lotus roots increased by 3.0% to 8.3%, and the quality of lotus roots was improved. Therefore, better purification and utilization results can be achieved.
文摘Widely application of CWs (Constructed Wetlands) in domestic wastewater treatment of China is developing wetlands into a multi-function wetland system. Wetland center in CAMIP (Changshu Advanced Materials Industrial Park) (Suzhou, Jiangsu Province, China) successfully improved tail water quality to level IV of Environment Quality Standards for Surface Water (GB3838-2002) by the combination of different CW steps and achieved water reuse in CAMIP for industrial purpose. Different from traditional tail water advanced treatment, wetland center is designed under the principle of combining landscape and ecological treatment technology. Since this center started running, the removal rate of TN (Total Nitrogen), NH3-N, TP (Total Phosphorus) and COD (Chemical Oxygen Demand) reaches 87%, 91%, 44% and 60% respectively. Also, 2,038,000 m^3 industrial water reuse in 2015 and 2016 was achieved; emission reduction on COD, NH3-N and TN reached 100 t, 7.2 t and 15.2 t; an ecological garden that combines ecological wastewater treatment, wetland landscape, habitat renovation and educational functions was created.
文摘In this paper,the water quality of the Xixi Wetland was evaluated and the characteristics of water pollution were described according to the survey data.Based on the status of water quality and its functional requirements as an urban wetland,biological-ecological countermeasures were suggested.The experimental use of ecological technologies,such as artificial wetlands,ecological aquiculture and artificial floating island,were done in several fish ponds in the Xixi Wetland.Water monitoring results show that the quality of the treated water has improved significantly and the measures to purify the eutrophic water in the wetland have been effective.