Ecological suitability analysis is an important step in ecological planning. It applies the basis toestablish a sound development planning. In this paper, by applying multi-dimension niche concept, an eco-logical nich...Ecological suitability analysis is an important step in ecological planning. It applies the basis toestablish a sound development planning. In this paper, by applying multi-dimension niche concept, an eco-logical niche suitability (ENS) model was developed. The ENS model, combined with geographical informa-tion system (GIS) and spatial simulation, was used to analyze regional resources and environmental features ,and identify the suitability of regional resource and environment to regional development. An application ofthe ENS model in Taojiang agricultural land use planning is presented.展开更多
This paper, taking Beiwenquan Town of Beibei, Chongqing as an example, assessed the impacts of land use on ecological health by comprehensive index method, and discussed methodological system of sustainable land use p...This paper, taking Beiwenquan Town of Beibei, Chongqing as an example, assessed the impacts of land use on ecological health by comprehensive index method, and discussed methodological system of sustainable land use planning based on ecological health. Results indicated that: 1) From 1992 to 2002, land use changes focused on 12 patterns with the total conversion area of 92.11%, which were related to cultivated land, residential and industrial-mining area, and orchard land. Urbanization and economic reconstruction were the leading driving forces. 2) There was obvious difference of the areas of ecotypes driven by land use change in wide valley and mild slope between 1992 and 2002, while there were little or no difference in steep slope and very steep slope. 3) Both of the conditions of ecological health in 1992 and 2002 were sound, and the ecotypes focused on the types of health and sub-health. But, health ecosystem in 1992, with an area of 764.64ha, accounting for 38.51% of the total evaluation area, was better than that in 2002, with an area of 636.10ha, accounting for 34.19% of the total evaluation area. 4) The ecotypes involved into different ranges have already degenerated, due to humankind’s disturbance, while the conditions of ecological health in the same ranges in 1992, regardless of stability and reconstruction, were better than that in 2002. 5) The planning scenario based on ecological health was accorded with the practice condition of Beiwenquan Town: 388.29ha of cultivated land could meet the Beiwenquan demand of food and byproduct; 1045.26ha of forest land area, the Beiwenquan demand of ecological health; and 1004.73ha of the residential and industrial-mining area, the Beiwenquan building demand. 6) Sustainable land use planning based on ecological health had higher useful value, because it not only stood to ecological theory, but also satisfied the developmental demand of society and economy.展开更多
In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, we...In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, wetland, and riparian ecosystems. To assess the integrated impact of water diversion on ecological water uses, we proposed a hierarchy evaluation model composed of four layers representing the evaluation goal, sub-areas of the influenced region, evaluation criteria, and water diversion schemes, respectively. The evaluation criteria for different types of ecological water uses were proposed, and the analytical hierarchy process was used for the integrated assessment. For a river ecosystem, the percentage of mean annual flow was used to define the grade of environmental flow. For a lake ecosystem, water recharge to the lake to compensate the lake water losses was used to assess the ecological water use of a lake. The flooding level of the wetland and the groundwater level in the riparian plain were used to assess the wetland and riparian ecological water uses, respectively. The proposed model was applied to a basin in northern Xinjiang in northwest China, where both water diversion and inter-basin water transfer projects were planned to be carried out. Based on assessment results for the whole study area and two sub-areas, an appropriate scheme was recommended from four planning schemes. With the recommended scheme, ecological water uses of the influenced ecosystems can be maintained at an acceptable level. Meanwhile, economical water requirements can be met to a great extent.展开更多
Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation re...Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation restoration in the Beijing-Tianjin Sand Source Region(BTSSR) from 2000 to 2010 based on the rain use efficiency(RUE) trend in relation to the land cover. More than half of the BTSSR experienced a vegetation productivity increase from 2000 to 2010, with the increasing intensity being sensitive to the indicators chosen. A clear tendency towards smaller increasing areas was shown when using the net primary productivity(NPP, 51.30%) instead of the accumulated normalized difference vegetation index(59.30%). The short-term variation in the precipitation and intra-seasonal precipitation distribution had a great impact on the remote sensing-based vegetation productivity. However, the residual trends method(RESTREND) effectively eliminated this correlation, while incorporating the variance and skewness of the precipitation distribution increased the models′ ability to explain the vegetation productivity variation. The RUE combined with land cover dynamics was valid for the effectiveness assessment of the ecological engineering projects on vegetation restoration. Particularly, the result based on growing season accumulated normalized difference vegetation index(ΣNDVI) residuals was the most effective, showing that 47.39% of the BTSSR experienced vegetation restoration from 2000 to 2010. The effectiveness of the ecological engineering projects differed for each subarea and was proportional to the strength of ecological engineering. The water erosion region dominated by woodland showed the best restoration, followed by the wind-water erosion crisscross regions, while the wind erosion regions dominated by grassland showed the worst effect. Seriously degraded regions still cover more area in the BTSSR than restored regions. Therefore, more future effort should be put in restoring degraded land.展开更多
To evaluate gambiered Guangdong silk's ecology properties, the raw materials ecology, production ecology and use ecology are analyzed; and the safety to human is tested according to GB/T18885 - 2002. Gambiered Guangd...To evaluate gambiered Guangdong silk's ecology properties, the raw materials ecology, production ecology and use ecology are analyzed; and the safety to human is tested according to GB/T18885 - 2002. Gambiered Guangdong silk is a kind of natural product. All its raw materials are reproducible and degradable natural resources, and it can decompose completely when being discarded. R is comfortable to wear, and easy to clean and dry. It is mainly manufactured by dip-dyeing in dye yam solution, and insolating under the burning sun. The production energy is solar, a kind of clean and reproducible energy. The production process is clean and environmental friendly. There is neither the utilization of synthetic dyestuff and chemical auxiliary, nor the discharge of environment pollutant, and even the dreg of dye yam is used as fuel. The safety test results show that pH value of water extract, heavy metal content (except for Pb content), color fastness and odor meet the requirements of GB/T18885 - 2002 and Okeo-tex standard 100.展开更多
Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater res...Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater research.This study uses bibliometric visualization analysis to examine the progress and trends in groundwater numerical simulation methods.By analyzing literature indexed in the Web of Science database from January 1990 to February 2023,and employing tools such as Citespace and VOSviewer,we assessed publication volume,research institutions and their collaborations,prolific scholars,keyword clustering,and emerging trends.The findings indicate an overall upward trend in both the number of publications and citations concerning groundwater numerical simulations.Since 2010,the number of publications has tripled compared to the total before 2010,underscoring the increasing significance and potential of numerical simulation methods in groundwater science.China,in particular,has shown remarkable growth in this field over the past decade,surpassing the United States,Canada,and Germany.This progress is closely linked to strong national support and active participation from research institutions,especially the contributions from teams at Hohai University,China University of Geosciences,and the University of Science and Technology of China.Collaboration between research teams is primarily seen between China and the United States,with less noticeable cooperation among other countries,resulting in a diverse and dispersed development pattern.Keyword analysis highlights that international research hotspots include groundwater recharge,karst water,geothermal water migration,seawater intrusion,variable density flow,contaminant and solute transport,pollution remediation,and land subsidence.Looking ahead,groundwater numerical simulations are expected to play a more prominent role in areas such as climate change,surface water-groundwater interactions,the impact of groundwater nitrates on the environment and health,submarine groundwater discharge,ecological water use,groundwater management,and risk prevention.展开更多
文摘Ecological suitability analysis is an important step in ecological planning. It applies the basis toestablish a sound development planning. In this paper, by applying multi-dimension niche concept, an eco-logical niche suitability (ENS) model was developed. The ENS model, combined with geographical informa-tion system (GIS) and spatial simulation, was used to analyze regional resources and environmental features ,and identify the suitability of regional resource and environment to regional development. An application ofthe ENS model in Taojiang agricultural land use planning is presented.
基金Under the auspices of the Key Project of Science and Technology oftheMinistryofEducation(No .03111) and In-cubationFund ProjectofScienceand Technology Committee ofChongqing (No .017079)
文摘This paper, taking Beiwenquan Town of Beibei, Chongqing as an example, assessed the impacts of land use on ecological health by comprehensive index method, and discussed methodological system of sustainable land use planning based on ecological health. Results indicated that: 1) From 1992 to 2002, land use changes focused on 12 patterns with the total conversion area of 92.11%, which were related to cultivated land, residential and industrial-mining area, and orchard land. Urbanization and economic reconstruction were the leading driving forces. 2) There was obvious difference of the areas of ecotypes driven by land use change in wide valley and mild slope between 1992 and 2002, while there were little or no difference in steep slope and very steep slope. 3) Both of the conditions of ecological health in 1992 and 2002 were sound, and the ecotypes focused on the types of health and sub-health. But, health ecosystem in 1992, with an area of 764.64ha, accounting for 38.51% of the total evaluation area, was better than that in 2002, with an area of 636.10ha, accounting for 34.19% of the total evaluation area. 4) The ecotypes involved into different ranges have already degenerated, due to humankind’s disturbance, while the conditions of ecological health in the same ranges in 1992, regardless of stability and reconstruction, were better than that in 2002. 5) The planning scenario based on ecological health was accorded with the practice condition of Beiwenquan Town: 388.29ha of cultivated land could meet the Beiwenquan demand of food and byproduct; 1045.26ha of forest land area, the Beiwenquan demand of ecological health; and 1004.73ha of the residential and industrial-mining area, the Beiwenquan building demand. 6) Sustainable land use planning based on ecological health had higher useful value, because it not only stood to ecological theory, but also satisfied the developmental demand of society and economy.
基金supported by the National Natural Science Foundation of China (Grant No. 50879041)
文摘In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, wetland, and riparian ecosystems. To assess the integrated impact of water diversion on ecological water uses, we proposed a hierarchy evaluation model composed of four layers representing the evaluation goal, sub-areas of the influenced region, evaluation criteria, and water diversion schemes, respectively. The evaluation criteria for different types of ecological water uses were proposed, and the analytical hierarchy process was used for the integrated assessment. For a river ecosystem, the percentage of mean annual flow was used to define the grade of environmental flow. For a lake ecosystem, water recharge to the lake to compensate the lake water losses was used to assess the ecological water use of a lake. The flooding level of the wetland and the groundwater level in the riparian plain were used to assess the wetland and riparian ecological water uses, respectively. The proposed model was applied to a basin in northern Xinjiang in northwest China, where both water diversion and inter-basin water transfer projects were planned to be carried out. Based on assessment results for the whole study area and two sub-areas, an appropriate scheme was recommended from four planning schemes. With the recommended scheme, ecological water uses of the influenced ecosystems can be maintained at an acceptable level. Meanwhile, economical water requirements can be met to a great extent.
基金Under the auspices of National Natural Science Foundation of China(No.41571421)National Science and Technology Major Project of China(No.21-Y30B05-9001-13/15)
文摘Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation restoration in the Beijing-Tianjin Sand Source Region(BTSSR) from 2000 to 2010 based on the rain use efficiency(RUE) trend in relation to the land cover. More than half of the BTSSR experienced a vegetation productivity increase from 2000 to 2010, with the increasing intensity being sensitive to the indicators chosen. A clear tendency towards smaller increasing areas was shown when using the net primary productivity(NPP, 51.30%) instead of the accumulated normalized difference vegetation index(59.30%). The short-term variation in the precipitation and intra-seasonal precipitation distribution had a great impact on the remote sensing-based vegetation productivity. However, the residual trends method(RESTREND) effectively eliminated this correlation, while incorporating the variance and skewness of the precipitation distribution increased the models′ ability to explain the vegetation productivity variation. The RUE combined with land cover dynamics was valid for the effectiveness assessment of the ecological engineering projects on vegetation restoration. Particularly, the result based on growing season accumulated normalized difference vegetation index(ΣNDVI) residuals was the most effective, showing that 47.39% of the BTSSR experienced vegetation restoration from 2000 to 2010. The effectiveness of the ecological engineering projects differed for each subarea and was proportional to the strength of ecological engineering. The water erosion region dominated by woodland showed the best restoration, followed by the wind-water erosion crisscross regions, while the wind erosion regions dominated by grassland showed the worst effect. Seriously degraded regions still cover more area in the BTSSR than restored regions. Therefore, more future effort should be put in restoring degraded land.
基金Guangdong province science and technology plan project(No.2006B36401001)Guangzhou philosophy and social science planning program in 2005(No.YZ15-10)
文摘To evaluate gambiered Guangdong silk's ecology properties, the raw materials ecology, production ecology and use ecology are analyzed; and the safety to human is tested according to GB/T18885 - 2002. Gambiered Guangdong silk is a kind of natural product. All its raw materials are reproducible and degradable natural resources, and it can decompose completely when being discarded. R is comfortable to wear, and easy to clean and dry. It is mainly manufactured by dip-dyeing in dye yam solution, and insolating under the burning sun. The production energy is solar, a kind of clean and reproducible energy. The production process is clean and environmental friendly. There is neither the utilization of synthetic dyestuff and chemical auxiliary, nor the discharge of environment pollutant, and even the dreg of dye yam is used as fuel. The safety test results show that pH value of water extract, heavy metal content (except for Pb content), color fastness and odor meet the requirements of GB/T18885 - 2002 and Okeo-tex standard 100.
基金supported by the Institute of Hydrogeology and Environmental Geology,China Geological Survey"Coupling analysis of groundwater and land subsidence in typical cities of the North China Plain based on InSAR-GRACE technology"project under Grant No.KY202302the China Geological Survey"Research and promotion of digital water resources survey technology"project under Grant No.DD20230427the"Cloud platform geological survey node operation and maintenance and network security guarantee(Institute of Hydrogeology and Environmental Geology)"project under Grant No.DD20230719.
文摘Groundwater is a vital component of the hydrological cycle and essential for the sustainable development of ecosystems.Numerical simulation methods are key tools for addressing scientific challenges in groundwater research.This study uses bibliometric visualization analysis to examine the progress and trends in groundwater numerical simulation methods.By analyzing literature indexed in the Web of Science database from January 1990 to February 2023,and employing tools such as Citespace and VOSviewer,we assessed publication volume,research institutions and their collaborations,prolific scholars,keyword clustering,and emerging trends.The findings indicate an overall upward trend in both the number of publications and citations concerning groundwater numerical simulations.Since 2010,the number of publications has tripled compared to the total before 2010,underscoring the increasing significance and potential of numerical simulation methods in groundwater science.China,in particular,has shown remarkable growth in this field over the past decade,surpassing the United States,Canada,and Germany.This progress is closely linked to strong national support and active participation from research institutions,especially the contributions from teams at Hohai University,China University of Geosciences,and the University of Science and Technology of China.Collaboration between research teams is primarily seen between China and the United States,with less noticeable cooperation among other countries,resulting in a diverse and dispersed development pattern.Keyword analysis highlights that international research hotspots include groundwater recharge,karst water,geothermal water migration,seawater intrusion,variable density flow,contaminant and solute transport,pollution remediation,and land subsidence.Looking ahead,groundwater numerical simulations are expected to play a more prominent role in areas such as climate change,surface water-groundwater interactions,the impact of groundwater nitrates on the environment and health,submarine groundwater discharge,ecological water use,groundwater management,and risk prevention.