[Objective] The aim was to improve and restore destroyed riverine and water ecosystem and to prevent bio-diversity from deteriorating in Jari demonstration plot in Ethiopia. [Method] Biological engineering and natural...[Objective] The aim was to improve and restore destroyed riverine and water ecosystem and to prevent bio-diversity from deteriorating in Jari demonstration plot in Ethiopia. [Method] Biological engineering and naturalization were made use of to protect nature and restore wetland as per Succession Theory. [Result] Both of eco- environment and eco-functions of Mille River were restored through reconstruction of biocenosis in wetlands. [Conclusion] It is feasible to implement matched ecological projects in semiarid regions in East Africa, providing references for restoration and protection of local water resources.展开更多
Groundwater,as a critical component of the hydrological cycle,is essential for sustainable ecosystem development.To clarify the current status of domestic and overseas research,and to identify hotspots,frontier and fu...Groundwater,as a critical component of the hydrological cycle,is essential for sustainable ecosystem development.To clarify the current status of domestic and overseas research,and to identify hotspots,frontier and future trends of groundwater and ecology research,this study utilizes bibliometric methods and CiteSpace software to examine relevant published articles in the Web of Science(WOS)and CNKI databases from 1978 to 2022.Specifically,this study analyzes(1)the annual number of published papers;(2)research institutions;(3)keywords;and(4)evolution of research hotspots.The findings reveal that the United States,China,and Germany are the top three countries in groundwater and ecology research.International research hotspots mainly focus on microbial ecology,climate change,groundwater-surface water interactions in the hyporheic zone,biodiversity,and submarine groundwater discharge,while domestic research hotspots mainly focus on ecological water conveyance,ecological flow,groundwater development and utilization,groundwater pollution,and groundwater and ecological protection.Both domestic and international research hotspots exhibit interdisciplinary features with diverse research objects and assessment methods.Future research in this area is expected to focus on topics such as contamination,groundwater quality,framework,mechanism,spatial distribution,and dissolved organic matter.Additionally,the study of ecological recharge,ecological flow,ecological protection,water intake and use will continue to be the hot topics domestically.展开更多
Landscape ecology is playing an increasingly important role in resources management and landuse planning in recent decades and attracting much attention from resource managers and scientists in China as well as in the...Landscape ecology is playing an increasingly important role in resources management and landuse planning in recent decades and attracting much attention from resource managers and scientists in China as well as in the world. Reviews of landscape ecology development in China have been well documented, whereas forest landscape ecology and its applications receive relatively fewer reviews. In this paper, we first present a brief review of the historical development and current advances of landscape ecology in China and then introduce the applications of landscape ecology to forest park designs, urban greenspace planning, ecological restoration, biodiversity conservation and forest eco-hydrology. Finally, the problems with the application of forest landscape ecology in China, such as inadequate synthesis and integration, lack of basic research on patterns and processes, basic data shortage and model usage problem are discussed on the basis of which we suggest a future direction of forest landscape ecology in China.展开更多
Against the backdrop of global urbanization,ecological civilization problems have become increasingly prominent,among which water ecological civilization has been a focus of researches for being closely tied with urba...Against the backdrop of global urbanization,ecological civilization problems have become increasingly prominent,among which water ecological civilization has been a focus of researches for being closely tied with urban life.Under the context of constructing water ecological civilization,this paper from the perspective of landscape ecological planning analyzed the connection of river and lake water systems,construction of fl ood and water diversion project,water pollution control,water ecological conservation and ecological river construction,based on different water ecological construction objectives;explored how to support landscape planning by fully using landscape ecological principles and landscape indexes;fi nally proposed to design more delicate objective-based landscape indexes and the overall landscape index model for water ecological construction.展开更多
The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Ar...The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries(Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index(NDVI), land cover, and aerosol optical depth(AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions(North Aral Sea catchment area in the downstream of the Syr Darya River(Subregion Ⅰ);artificial flood overflow area in the downstream of the Aral Sea(Subregion Ⅱ);physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea(Subregion Ⅲ);physical/chemical remediation area of severe salinization in the central part of the South Aral Sea(Subregion Ⅳ);existing water surface and potential restoration area of the South Aral Sea(Subregion Ⅴ);Aral Sea vegetation natural recovery area(Subregion Ⅵ);and vegetation planting area with slight salinization in the South Aral Sea(Subregion Ⅶ)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion Ⅰ and Subregion Ⅱ with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion Ⅲ and Subregion Ⅳ have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion Ⅴ located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion Ⅵ and Subregion Ⅶ where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea.展开更多
Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning ...Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning of vegetation remain scarce.In this study,we utilized the normalized difference vegetation index(NDVI)as an indicator of vegetation to investigate the trends of vegetation greening and browning(monotonic,interruption,and reversal)through the breaks for the additive season and trend(BFAST)method across China’s drylands from 1982 to 2022.It also reveals the impacts of ecological restoration programs(ERPs)and climate change on these vegetation trends.We find that the vegetation displays an obvious pattern of east-greening and west-browning in China’s drylands.Greening trends mainly exhibits monotonic greening(29.8%)and greening with setback(36.8%),whereas browning shows a greening to browning reversal(19.2%).The increase rate of greening to browning reversal is 0.0342/yr,which is apparently greater than that of greening with setback,0.0078/yr.This research highlights that,under the background of widespread vegetation greening,vegetation browning is pro-gressively increasing due to the effects of climate change.Furthermore,the ERPs have significantly increased vegetation coverage,with the increase rate in 2000-2022 being twice as much as that of 1982-1999 in reveg-etation regions.Vegetation browning in southwestern Qingzang Plateau is primarily driven by adverse climatic factors and anthropogenic disturbances,which offset the efforts of ERPs.展开更多
Ecosystem degradation is one of the critical constraints for the sustainable development of our planet.However,recovering an ecosystem to a pre-impairment condition is often not practical.The International Restoration...Ecosystem degradation is one of the critical constraints for the sustainable development of our planet.However,recovering an ecosystem to a pre-impairment condition is often not practical.The International Restoration Standards provide the first framework for practical guidance on what constitutes the process of ecological repair and how this repair process can be influenced to improve net ecological benefits.In these Standards,Restorative Continuum is highlighted and it recognises that many do not,yet there is still value in aspiring to improvements to the highest extent possible,with some sites potentially being able to be improved in a stepwise manner.Here we elaborate on these Standards by providing a cross-ecosystem theoretical framework of Stepwise Ecological Restoration(STERE)for promoting higher environmental benefits.STERE allows the selection of suitable restorative modes by considering the degree of degradation while encouraging a transition to a higher state.These models include environmental remediation for completely modified and degraded ecosystems,ecological rehabilitation for highly modified and degraded ecosystems,and ecological restoration for degraded native ecosystems.STERE requires selecting tailored restorative modes,setting clear restorative targets and reference ecosystems,applying a systematic-thinking approach,and implementing a continuous monitoring program at all process stages to achieve a resilient trajectory.STERE allows adaptive management in the context of climate change,and when the evidence is available,to“adapt to the future”to ensure climate resilience.The STERE framework could assist in initiating and implementing restoration projects worldwide,especially in developing countries.展开更多
Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants durin...Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants during the later periods of vegetation restoration remains unclear.Therefore,this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions.The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom.forest in the Tengger Desert,China.The germination tests were conducted in a laboratory setting.The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation(60,40,and 20 a)on the progress of vegetation restoration and ecological conditions in artificial C.korshinskii forest.The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz.,Eragrostis minor Host.,and Agropyron mongolicum Keng.,and the top three dominant plant species in soil seed bank were E.minor,Chloris virgata Sw.,and E.gmelinii.As restoration period increased,the density of seed rain and soil seed bank increased first and then decreased.While for species richness,as restoration period increased,it gradually increased in seed rain but decreased in soil seed bank.There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods.The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period.The shape of the seeds,specifically those with external appendages such as spines and crown hair,clearly had an effect on their dispersal,then resulting in lower seed density in soil seed bank.In addition,precipitation was a crucial factor in promoting rapid germination,also resulting in lower seed density in soil seed bank.Our findings provide valuable insights for guiding future interventions during the later periods of artificial C.korshinskii forest,such as sowing and restoration efforts using unmanned aerial vehicles.展开更多
The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and ...The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and identify treatment timing for restoring the ecological environment.The Guanbanwusu mining subsidence area in Inner Mongolia,China was selected as the research case for this study.The evolution mechanism of different penetrating fissures was revealed by field measurement,physical simulation and theoretical analysis.The treatment timing prediction model for the mining subsidence area was established based on the enhanced Weibull time function.The results show that the ground fissures are mainly step-type and collapse-type fissures.The breaking form of overlying strata determines their vertical opening and horizontal dislocation.The high mining intensity in the western mining area results in a shortened period of dynamic fissure expansion and reduced closure degree.The damage extent of the overlying strata exhibits zoning characteristics both vertically and horizontally.The relative standard deviation of the prediction model is only 3.7%.Concurrently,the prediction model is employed to determine the optimal timing for treatment in the study area,estimated to be 259 days.Subsequently,once this threshold is reached,the study area undergoes treatment and restoration of its e cological environment.This study addresses the knowledge gap in this field by highlighting the interconnectedness between rock strata structure and evolution mechanism of penetrating fissures,thereby providing a method for determining the treatment timing in mining subsidence areas.展开更多
The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric ...The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation.展开更多
Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferrugin...Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferruginous campo rupestre(rupestrian grassland known as Canga in Brazil),are even more susceptible to severe impacts due to their extreme habitat conditions and low resilience.The determination of reference ecosystems based on the intrinsic characteristics of the ecosystem is essential for conservation as well as to the implementation of ecological restoration.We proposed the reference ecosystem of the three main types of habitats of the ferruginous campo rupestre based on their floristic composition.We described the floristic composition of each habitat and evaluated the physicochemical properties of the soils and the relationship between plants and soils.All three habitats showed high diversity of plant species and many endemic species,such as Chamaecrista choriophylla,Cuphea pseudovaccinium,Lychnophora pinaster,and Vellozia subalata.The distribution of vegetation was strongly related with the edaphic characteristics,with a set of species more adapted to high concentration of base saturation,fine sand,organic carbon,and iron,while another set of species succeeded in more acidic soils with higher S and silt concentration.We provide support for the contention that the ferruginous campo rupestre is a mosaic of different habitats shaped by intrinsic local conditions.Failure to recognize the floristic composition of each particular habitat can lead to inappropriate restoration,increased habitat homogenization and increased loss of biodiversity and ecosystem services.This study also advances the knowledge base for building the reference ecosystem for the different types of ferruginous campo rupestre habitats,as well as a key database for highlighting those species contribute most to community assembly in this diverse and threatened tropical mountain ecosystem.展开更多
The growth of society and population has led to a range of water pollution issues.Among these,non-point source pollution assessment and treatment pose a particular challenge due to its formation mechanism.This has bec...The growth of society and population has led to a range of water pollution issues.Among these,non-point source pollution assessment and treatment pose a particular challenge due to its formation mechanism.This has become a focal point and challenge in water pollution treatment research.The study area for this research was the Huanghou basin in Guizhou Province,southwest China.The land use type of the basin was analyzed using remote sensing technology,and water quality data was collected by distributing points throughout the basin,based on source-sink landscape theory.The distribution map of the basin’s source-sink landscape and the results of water quality data accurately and efficiently identified the areas with high risk of non-point source pollution in the western and southwestern residential and agricultural areas of the upper basin.Hence,a strategy of“increasing sinks and decreasing sources”was proposed.The strategy was implemented at both macro and micro levels to address non-point source pollution in the basin using ecological remediation techniques.The work to control karst rocky desertification should continue at a macro level.The rocky desertification area in the basin should gradually transform into grassland and forested land,while increasing the overall area of the sink landscape.Ecological restoration techniques,such as slope planting,riparian zone vegetation restoration,increasing plant abundance,and restoring aquatic plants,can effectively control non-point source pollution at the micro level.Compared to traditional control methods,this remediation strategy focuses on source and process control.It is more effective and does not require large-scale water pollution control projects,which can save a lot of environmental control funds and management costs.Therefore,it has greater research significance and application value.展开更多
As an important ecological tree species in northern China, Populus simonii plays a crucial role in maintaining ecological balance and promoting environmental sustainability. The academic community has conducted a seri...As an important ecological tree species in northern China, Populus simonii plays a crucial role in maintaining ecological balance and promoting environmental sustainability. The academic community has conducted a series of in-depth studies on this species, covering key areas such as genomics, survival mechanisms, and genetic breeding. Through the analysis of the genomic structure and function of P. simonii, we have not only revealed the molecular basis for its adaptation to harsh environments but also identified key genes that promote its growth and resistance to pests and diseases. Furthermore, exploring the survival mechanisms of P. simonii has deepened our understanding of its stress resistance traits, including how it effectively copes with abiotic stresses such as drought, salinization, and heavy metal pollution. In genetic breeding, significant progress has been made through the application of modern biotechnology, improving the growth rate and wood quality of P. simonii and enhancing its environmental adaptability and disease resistance. These research findings have not only enriched our knowledge of the biological characteristics of P. simonii but also provided a solid scientific foundation for its application in ecological restoration, forestry production, and environmental management.展开更多
The Caohai Nature Reserve is one of the three major plateau freshwater lakes in China.Since the 1950s,human activities such as land reclamation and population relocation have greatly damaged Caohai.A rapid evaluation ...The Caohai Nature Reserve is one of the three major plateau freshwater lakes in China.Since the 1950s,human activities such as land reclamation and population relocation have greatly damaged Caohai.A rapid evaluation of the spatiotemporal evolution trend of the ecological quality of the Caohai Nature Reserve is significant for the maintenance and construction of the ecosystem in this area.The research is based on the Google Earth Engine(GEE)remote sensing cloud computing platform.Landsat TM/OLI images from May to October in five time periods:2000-2002,2004-2006,2009-2011,2014-2016,and 2019-2021 were obtained to reconstruct the optimal cloud image set by averaging the images in each time period.By constructing four ecological indicators:Greenness(NDVI),Wetness(Wet),Hotness(LST),and Dryness(NDBSI),and using Principal Component Analysis(PCA)method to obtain the Remote Sensing Ecological Index(RSEI)for the corresponding years,the spatiotemporal variation of ecological quality in the Caohai Nature Reserve over 20 years was analyzed.The results indicate:①the mean value of RSEI increased from 0.460 in 2000-2002 to 0.772 in 2019-2021,a 67.83%increase,indicating a significant improvement in the ecological quality of the reserve over the 20 years;②from the perspective of functional zoning of the Caohai Nature Reserve,the ecological quality of the core area showed a degrading trend,while the ecological quality of the buffer zone and experimental zone significantly improved;③with the implementation of ecological restoration projects,the ecological quality of the reserve gradually recovered and improved from 2014 to 2021.The trend of RSEI value changes is well correlated with human interventions,indicating that the PCA-based RSEI model can be effectively used for ecological quality assessment in lake areas.展开更多
Aiming at the problems of water pollution and ecological environment degradation in urban artificial landscape lakes,the ecological restoration technologies of artificial landscape lakes at home and abroad were studie...Aiming at the problems of water pollution and ecological environment degradation in urban artificial landscape lakes,the ecological restoration technologies of artificial landscape lakes at home and abroad were studied to provide some reference for the ecological restoration of urban artificial landscape lakes in China.展开更多
In urban water ecological restoration projects,the selection and configuration of wetland plants are crucial for water quality improvement,ecological diversity enhancement,and landscape beautification.Different plants...In urban water ecological restoration projects,the selection and configuration of wetland plants are crucial for water quality improvement,ecological diversity enhancement,and landscape beautification.Different plants have different characteristics,and a scientific and rational selection and optimization of plant species is needed.This paper proposes an optimized plant selection and configuration scheme for urban water ecological restoration based on the ecological characteristics and pollutant removal performance of wetland plants.It analyzes the diversity,removal mechanisms,and configuration modes of wetland plants,taking into account ecology,aesthetics,and cost-effectiveness,to provide scientific evidence for wetland plant configuration and support water environment management decision-making.展开更多
With the continuous development of the mining industry,the number of abandoned mines is increasing,which brings many impacts on the geology and ecological environment around the mines.It is urgent to attach great impo...With the continuous development of the mining industry,the number of abandoned mines is increasing,which brings many impacts on the geology and ecological environment around the mines.It is urgent to attach great importance to the ecological management and environmental restoration of abandoned mines.The long-term traditional development path of rural areas,following the model of“pollution first,treatment later,”fails to meet the needs of sustainable development.The contradiction between mine economic development and ecological environment degradation is becoming increasingly prominent,which urgently needs to be solved.Under the guidance of the Party and the state,in order to implement the relevant policies of“green mountains and clear waters are gold and silver mountains,”we emphasize rural green development,and the transformation of rural green development path is imperative.This paper takes Datu Mine in Xinhe Village,Dadukou District,Chongqing as the research object,combines rural ecological development as the research basis,and innovatively integrates the“educational research”model,aiming to provide practical strategies for the sustainable development of rural landscapes in abandoned mines.展开更多
Jilin Province is one of major forest regions of China. This paper analyzed the existing conditions and tendency in forest ecological restoration of the province and revealed the confronting problems in ecology and ec...Jilin Province is one of major forest regions of China. This paper analyzed the existing conditions and tendency in forest ecological restoration of the province and revealed the confronting problems in ecology and economy. The authors divided Jilin Province into three ecological economic zones, including nid-west farming and stockbreeding area, east hilly diversified-operation area, and Changbai Mountain national forest area, and discussed the direction and tasks of forest ecological restoration of each zone. Some Countermeasures and suggestions were put forward for restoration of forest ecology of the province.展开更多
In order to resolve the issue of soil erosion in East African plateau, a micro-landscape irrigation region was established in Ethiopia plateau to research status quo of agricultural demonstration site in Jari in Ethio...In order to resolve the issue of soil erosion in East African plateau, a micro-landscape irrigation region was established in Ethiopia plateau to research status quo of agricultural demonstration site in Jari in Ethiopia and to analyze the relation between structure and function of inner elements in different landscapes of demonstration site. Furthermore, in accordance with ecology, silviculture, agriculture and economics, the ecological landscapes were classified as per landscape functions; lands returning from farming were classified and re-used; ecosystems of grassland, river, agriculture and courtyard were researched; the feasibility of ecological restoration and sustainable development in demonstration site was demonstrated; the model for rational irrigation and water conservation was proposed. The research guarantees sustainable development of agriculture and animal husbandry and provides references for undeveloped countries with similar problems.展开更多
With expressway development and environment protection consciousness improving, slope protection technology with vegetation has drawn much more attention. From the perspective of ecology, Baoji-Hanzhong Expressway max...With expressway development and environment protection consciousness improving, slope protection technology with vegetation has drawn much more attention. From the perspective of ecology, Baoji-Hanzhong Expressway maximized slope protection technology with vegetation and formed attracting landscapes on basis of eco-protection. This research introduced the technology of Baoji-Hanzhong Expressway, and explored a low-cost and effective biological slopeprotection way, suitable for Baoji-Hanzhong Expressway, according to slope protection technologies, at home and abroad, with botany, water and soil conservation engineering, and architecture, which fixed and stabilized slopes, prevented rainfall scouring, and advanced slope protection development in China.展开更多
基金Supported by South-South Cooperation Project of SSC/SPFS-FAO-Ethiopia-China~~
文摘[Objective] The aim was to improve and restore destroyed riverine and water ecosystem and to prevent bio-diversity from deteriorating in Jari demonstration plot in Ethiopia. [Method] Biological engineering and naturalization were made use of to protect nature and restore wetland as per Succession Theory. [Result] Both of eco- environment and eco-functions of Mille River were restored through reconstruction of biocenosis in wetlands. [Conclusion] It is feasible to implement matched ecological projects in semiarid regions in East Africa, providing references for restoration and protection of local water resources.
基金the basic scientific research expense of the Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences(SK202119).
文摘Groundwater,as a critical component of the hydrological cycle,is essential for sustainable ecosystem development.To clarify the current status of domestic and overseas research,and to identify hotspots,frontier and future trends of groundwater and ecology research,this study utilizes bibliometric methods and CiteSpace software to examine relevant published articles in the Web of Science(WOS)and CNKI databases from 1978 to 2022.Specifically,this study analyzes(1)the annual number of published papers;(2)research institutions;(3)keywords;and(4)evolution of research hotspots.The findings reveal that the United States,China,and Germany are the top three countries in groundwater and ecology research.International research hotspots mainly focus on microbial ecology,climate change,groundwater-surface water interactions in the hyporheic zone,biodiversity,and submarine groundwater discharge,while domestic research hotspots mainly focus on ecological water conveyance,ecological flow,groundwater development and utilization,groundwater pollution,and groundwater and ecological protection.Both domestic and international research hotspots exhibit interdisciplinary features with diverse research objects and assessment methods.Future research in this area is expected to focus on topics such as contamination,groundwater quality,framework,mechanism,spatial distribution,and dissolved organic matter.Additionally,the study of ecological recharge,ecological flow,ecological protection,water intake and use will continue to be the hot topics domestically.
文摘Landscape ecology is playing an increasingly important role in resources management and landuse planning in recent decades and attracting much attention from resource managers and scientists in China as well as in the world. Reviews of landscape ecology development in China have been well documented, whereas forest landscape ecology and its applications receive relatively fewer reviews. In this paper, we first present a brief review of the historical development and current advances of landscape ecology in China and then introduce the applications of landscape ecology to forest park designs, urban greenspace planning, ecological restoration, biodiversity conservation and forest eco-hydrology. Finally, the problems with the application of forest landscape ecology in China, such as inadequate synthesis and integration, lack of basic research on patterns and processes, basic data shortage and model usage problem are discussed on the basis of which we suggest a future direction of forest landscape ecology in China.
文摘Against the backdrop of global urbanization,ecological civilization problems have become increasingly prominent,among which water ecological civilization has been a focus of researches for being closely tied with urban life.Under the context of constructing water ecological civilization,this paper from the perspective of landscape ecological planning analyzed the connection of river and lake water systems,construction of fl ood and water diversion project,water pollution control,water ecological conservation and ecological river construction,based on different water ecological construction objectives;explored how to support landscape planning by fully using landscape ecological principles and landscape indexes;fi nally proposed to design more delicate objective-based landscape indexes and the overall landscape index model for water ecological construction.
基金supported by the Key R&D Program of Xinjiang Uygur Autonomous Region,China(2022B03021)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA20030101)the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region,China(2022TSYCLJ0011).
文摘The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries(Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index(NDVI), land cover, and aerosol optical depth(AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions(North Aral Sea catchment area in the downstream of the Syr Darya River(Subregion Ⅰ);artificial flood overflow area in the downstream of the Aral Sea(Subregion Ⅱ);physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea(Subregion Ⅲ);physical/chemical remediation area of severe salinization in the central part of the South Aral Sea(Subregion Ⅳ);existing water surface and potential restoration area of the South Aral Sea(Subregion Ⅴ);Aral Sea vegetation natural recovery area(Subregion Ⅵ);and vegetation planting area with slight salinization in the South Aral Sea(Subregion Ⅶ)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion Ⅰ and Subregion Ⅱ with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion Ⅲ and Subregion Ⅳ have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion Ⅴ located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion Ⅵ and Subregion Ⅶ where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea.
基金supported by the National Natural Science Foundation of China(Grants No.41991231,42041004,and 41888101)the China University Research Talents Recruitment Program(111 project,Grant No.B13045).
文摘Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning of vegetation remain scarce.In this study,we utilized the normalized difference vegetation index(NDVI)as an indicator of vegetation to investigate the trends of vegetation greening and browning(monotonic,interruption,and reversal)through the breaks for the additive season and trend(BFAST)method across China’s drylands from 1982 to 2022.It also reveals the impacts of ecological restoration programs(ERPs)and climate change on these vegetation trends.We find that the vegetation displays an obvious pattern of east-greening and west-browning in China’s drylands.Greening trends mainly exhibits monotonic greening(29.8%)and greening with setback(36.8%),whereas browning shows a greening to browning reversal(19.2%).The increase rate of greening to browning reversal is 0.0342/yr,which is apparently greater than that of greening with setback,0.0078/yr.This research highlights that,under the background of widespread vegetation greening,vegetation browning is pro-gressively increasing due to the effects of climate change.Furthermore,the ERPs have significantly increased vegetation coverage,with the increase rate in 2000-2022 being twice as much as that of 1982-1999 in reveg-etation regions.Vegetation browning in southwestern Qingzang Plateau is primarily driven by adverse climatic factors and anthropogenic disturbances,which offset the efforts of ERPs.
基金the Shenzhen Science and Technology Program(Grant No.KCXFZ20201221173601003)the Henan Provincial Key Laboratory of Hydrosphere and Watershed Water Security.
文摘Ecosystem degradation is one of the critical constraints for the sustainable development of our planet.However,recovering an ecosystem to a pre-impairment condition is often not practical.The International Restoration Standards provide the first framework for practical guidance on what constitutes the process of ecological repair and how this repair process can be influenced to improve net ecological benefits.In these Standards,Restorative Continuum is highlighted and it recognises that many do not,yet there is still value in aspiring to improvements to the highest extent possible,with some sites potentially being able to be improved in a stepwise manner.Here we elaborate on these Standards by providing a cross-ecosystem theoretical framework of Stepwise Ecological Restoration(STERE)for promoting higher environmental benefits.STERE allows the selection of suitable restorative modes by considering the degree of degradation while encouraging a transition to a higher state.These models include environmental remediation for completely modified and degraded ecosystems,ecological rehabilitation for highly modified and degraded ecosystems,and ecological restoration for degraded native ecosystems.STERE requires selecting tailored restorative modes,setting clear restorative targets and reference ecosystems,applying a systematic-thinking approach,and implementing a continuous monitoring program at all process stages to achieve a resilient trajectory.STERE allows adaptive management in the context of climate change,and when the evidence is available,to“adapt to the future”to ensure climate resilience.The STERE framework could assist in initiating and implementing restoration projects worldwide,especially in developing countries.
基金funded by the General Project of Key R&D Plan of Ningxia Hui Autonomous Region,China(2021BEG03008,2022BEG02012)the Science and Technology Innovation Leading Talent Project of Ningxia Hui Autonomous Region(2021GKLRLX13)the National Natural Science Foundation of China(31760707).
文摘Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants during the later periods of vegetation restoration remains unclear.Therefore,this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions.The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom.forest in the Tengger Desert,China.The germination tests were conducted in a laboratory setting.The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation(60,40,and 20 a)on the progress of vegetation restoration and ecological conditions in artificial C.korshinskii forest.The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz.,Eragrostis minor Host.,and Agropyron mongolicum Keng.,and the top three dominant plant species in soil seed bank were E.minor,Chloris virgata Sw.,and E.gmelinii.As restoration period increased,the density of seed rain and soil seed bank increased first and then decreased.While for species richness,as restoration period increased,it gradually increased in seed rain but decreased in soil seed bank.There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods.The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period.The shape of the seeds,specifically those with external appendages such as spines and crown hair,clearly had an effect on their dispersal,then resulting in lower seed density in soil seed bank.In addition,precipitation was a crucial factor in promoting rapid germination,also resulting in lower seed density in soil seed bank.Our findings provide valuable insights for guiding future interventions during the later periods of artificial C.korshinskii forest,such as sowing and restoration efforts using unmanned aerial vehicles.
基金supported by the Major Program of the National Natural Science Foundation of China(No.52394191)the Fundamental Research Funds for China University of Mining and Technology(Beijing):Doctoral Top-notch Innovative Talents Cultivation Fund(No.BBJ2023018,BBJ2023023)the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.GJNY-20-113-20).
文摘The Inner Mongolia mining area in western China are characterized by the development of numerous penetrating fissures,resulting in severe land damage.It is significant to reveal the underlying evolution mechanism and identify treatment timing for restoring the ecological environment.The Guanbanwusu mining subsidence area in Inner Mongolia,China was selected as the research case for this study.The evolution mechanism of different penetrating fissures was revealed by field measurement,physical simulation and theoretical analysis.The treatment timing prediction model for the mining subsidence area was established based on the enhanced Weibull time function.The results show that the ground fissures are mainly step-type and collapse-type fissures.The breaking form of overlying strata determines their vertical opening and horizontal dislocation.The high mining intensity in the western mining area results in a shortened period of dynamic fissure expansion and reduced closure degree.The damage extent of the overlying strata exhibits zoning characteristics both vertically and horizontally.The relative standard deviation of the prediction model is only 3.7%.Concurrently,the prediction model is employed to determine the optimal timing for treatment in the study area,estimated to be 259 days.Subsequently,once this threshold is reached,the study area undergoes treatment and restoration of its e cological environment.This study addresses the knowledge gap in this field by highlighting the interconnectedness between rock strata structure and evolution mechanism of penetrating fissures,thereby providing a method for determining the treatment timing in mining subsidence areas.
基金This research was supported by the Ningxia Hui Autonomous Region Key Research and Development Plan(2022BEG03052).
文摘The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation.
基金Anglo American and Knowledge Center for Biodiversity for financial supportthe research funding agencies CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico)+2 种基金scholarship from CNPq(151341/2023-0,150001/2023-1)FAPEMIG(Fundação de AmparoàPesquisa do Estado de Minas Gerais)Peld-CRSC 17(Long Term Ecology Program-campo rupestre of Serra do Cipó)。
文摘Land use change and occupation have led to modifications in the environment causing loss of biodiversity and ecosystem services throughout the planet.Some environments with high economic relevance,such as the ferruginous campo rupestre(rupestrian grassland known as Canga in Brazil),are even more susceptible to severe impacts due to their extreme habitat conditions and low resilience.The determination of reference ecosystems based on the intrinsic characteristics of the ecosystem is essential for conservation as well as to the implementation of ecological restoration.We proposed the reference ecosystem of the three main types of habitats of the ferruginous campo rupestre based on their floristic composition.We described the floristic composition of each habitat and evaluated the physicochemical properties of the soils and the relationship between plants and soils.All three habitats showed high diversity of plant species and many endemic species,such as Chamaecrista choriophylla,Cuphea pseudovaccinium,Lychnophora pinaster,and Vellozia subalata.The distribution of vegetation was strongly related with the edaphic characteristics,with a set of species more adapted to high concentration of base saturation,fine sand,organic carbon,and iron,while another set of species succeeded in more acidic soils with higher S and silt concentration.We provide support for the contention that the ferruginous campo rupestre is a mosaic of different habitats shaped by intrinsic local conditions.Failure to recognize the floristic composition of each particular habitat can lead to inappropriate restoration,increased habitat homogenization and increased loss of biodiversity and ecosystem services.This study also advances the knowledge base for building the reference ecosystem for the different types of ferruginous campo rupestre habitats,as well as a key database for highlighting those species contribute most to community assembly in this diverse and threatened tropical mountain ecosystem.
文摘The growth of society and population has led to a range of water pollution issues.Among these,non-point source pollution assessment and treatment pose a particular challenge due to its formation mechanism.This has become a focal point and challenge in water pollution treatment research.The study area for this research was the Huanghou basin in Guizhou Province,southwest China.The land use type of the basin was analyzed using remote sensing technology,and water quality data was collected by distributing points throughout the basin,based on source-sink landscape theory.The distribution map of the basin’s source-sink landscape and the results of water quality data accurately and efficiently identified the areas with high risk of non-point source pollution in the western and southwestern residential and agricultural areas of the upper basin.Hence,a strategy of“increasing sinks and decreasing sources”was proposed.The strategy was implemented at both macro and micro levels to address non-point source pollution in the basin using ecological remediation techniques.The work to control karst rocky desertification should continue at a macro level.The rocky desertification area in the basin should gradually transform into grassland and forested land,while increasing the overall area of the sink landscape.Ecological restoration techniques,such as slope planting,riparian zone vegetation restoration,increasing plant abundance,and restoring aquatic plants,can effectively control non-point source pollution at the micro level.Compared to traditional control methods,this remediation strategy focuses on source and process control.It is more effective and does not require large-scale water pollution control projects,which can save a lot of environmental control funds and management costs.Therefore,it has greater research significance and application value.
文摘As an important ecological tree species in northern China, Populus simonii plays a crucial role in maintaining ecological balance and promoting environmental sustainability. The academic community has conducted a series of in-depth studies on this species, covering key areas such as genomics, survival mechanisms, and genetic breeding. Through the analysis of the genomic structure and function of P. simonii, we have not only revealed the molecular basis for its adaptation to harsh environments but also identified key genes that promote its growth and resistance to pests and diseases. Furthermore, exploring the survival mechanisms of P. simonii has deepened our understanding of its stress resistance traits, including how it effectively copes with abiotic stresses such as drought, salinization, and heavy metal pollution. In genetic breeding, significant progress has been made through the application of modern biotechnology, improving the growth rate and wood quality of P. simonii and enhancing its environmental adaptability and disease resistance. These research findings have not only enriched our knowledge of the biological characteristics of P. simonii but also provided a solid scientific foundation for its application in ecological restoration, forestry production, and environmental management.
基金Supported by Joint Project between Bijie Science and Technology Bureau and Guizhou University of Engineering Science (Bike Lianhe Zi (Guigongcheng)[2021]03)Guizhou Provincial Key Technology R&D Program (Qiankehe[2023]General 211).
文摘The Caohai Nature Reserve is one of the three major plateau freshwater lakes in China.Since the 1950s,human activities such as land reclamation and population relocation have greatly damaged Caohai.A rapid evaluation of the spatiotemporal evolution trend of the ecological quality of the Caohai Nature Reserve is significant for the maintenance and construction of the ecosystem in this area.The research is based on the Google Earth Engine(GEE)remote sensing cloud computing platform.Landsat TM/OLI images from May to October in five time periods:2000-2002,2004-2006,2009-2011,2014-2016,and 2019-2021 were obtained to reconstruct the optimal cloud image set by averaging the images in each time period.By constructing four ecological indicators:Greenness(NDVI),Wetness(Wet),Hotness(LST),and Dryness(NDBSI),and using Principal Component Analysis(PCA)method to obtain the Remote Sensing Ecological Index(RSEI)for the corresponding years,the spatiotemporal variation of ecological quality in the Caohai Nature Reserve over 20 years was analyzed.The results indicate:①the mean value of RSEI increased from 0.460 in 2000-2002 to 0.772 in 2019-2021,a 67.83%increase,indicating a significant improvement in the ecological quality of the reserve over the 20 years;②from the perspective of functional zoning of the Caohai Nature Reserve,the ecological quality of the core area showed a degrading trend,while the ecological quality of the buffer zone and experimental zone significantly improved;③with the implementation of ecological restoration projects,the ecological quality of the reserve gradually recovered and improved from 2014 to 2021.The trend of RSEI value changes is well correlated with human interventions,indicating that the PCA-based RSEI model can be effectively used for ecological quality assessment in lake areas.
基金Supported by the Jiangsu Province Engineering Research Center of Agricultural and Rural Pollution Prevention Technology and Equipment(2023GRFX045)Innovation and Entrepreneurship Incubation Program for Students in Vocational Colleges of Jiangsu Province in 2023(G-2023-1257)+2 种基金High-end Training Program for Teachers Professional Leaders in Higher Vocational Colleges of Jiangsu Province in 2023(Sugaozhipeihan[2023]No.9)General Project of Philosophy and Social Science Research in Colleges and Universities of Jiangsu Province in 2023(2023SJYB1785)Project of Nantong Science and Technology Bureau(MSZ2022176,MS22022120).
文摘Aiming at the problems of water pollution and ecological environment degradation in urban artificial landscape lakes,the ecological restoration technologies of artificial landscape lakes at home and abroad were studied to provide some reference for the ecological restoration of urban artificial landscape lakes in China.
基金2023 Beilin District Science and Technology Plan Project(Project No.GX2339)the 2024 Xi’an Science and Technology Plan Project(Project No.24GXFW0065).
文摘In urban water ecological restoration projects,the selection and configuration of wetland plants are crucial for water quality improvement,ecological diversity enhancement,and landscape beautification.Different plants have different characteristics,and a scientific and rational selection and optimization of plant species is needed.This paper proposes an optimized plant selection and configuration scheme for urban water ecological restoration based on the ecological characteristics and pollutant removal performance of wetland plants.It analyzes the diversity,removal mechanisms,and configuration modes of wetland plants,taking into account ecology,aesthetics,and cost-effectiveness,to provide scientific evidence for wetland plant configuration and support water environment management decision-making.
基金National Innovation Training Project“Landscape Design of Educational Research Base Based on Mine Ecological Restoration:Taking the Restoration of Datu Mine in Xinhe Village,Dadukou District as an Example”(202312608002X)Chongqing Institute of Engineering Innovation Training Project“Yitian Xuegu”Innovative Design Research on Rural Education Practice Base in Longhe Town,Fengdu CountyChongqing Institute of Engineering School-Level Topic“Research on Urban Waterfront Landscape Design Based on the Concept of River Ecological Restoration:Taking the Section of Huaxi River in Chongqing Institute of Engineering as an Example”(2022xskz02)。
文摘With the continuous development of the mining industry,the number of abandoned mines is increasing,which brings many impacts on the geology and ecological environment around the mines.It is urgent to attach great importance to the ecological management and environmental restoration of abandoned mines.The long-term traditional development path of rural areas,following the model of“pollution first,treatment later,”fails to meet the needs of sustainable development.The contradiction between mine economic development and ecological environment degradation is becoming increasingly prominent,which urgently needs to be solved.Under the guidance of the Party and the state,in order to implement the relevant policies of“green mountains and clear waters are gold and silver mountains,”we emphasize rural green development,and the transformation of rural green development path is imperative.This paper takes Datu Mine in Xinhe Village,Dadukou District,Chongqing as the research object,combines rural ecological development as the research basis,and innovatively integrates the“educational research”model,aiming to provide practical strategies for the sustainable development of rural landscapes in abandoned mines.
基金part of "Investigation and evaluation on present condition of ecological environment and study on overall-planning of ecological
文摘Jilin Province is one of major forest regions of China. This paper analyzed the existing conditions and tendency in forest ecological restoration of the province and revealed the confronting problems in ecology and economy. The authors divided Jilin Province into three ecological economic zones, including nid-west farming and stockbreeding area, east hilly diversified-operation area, and Changbai Mountain national forest area, and discussed the direction and tasks of forest ecological restoration of each zone. Some Countermeasures and suggestions were put forward for restoration of forest ecology of the province.
基金Supported by South-South Cooperation Project of SSC/SPFS-FAO-Ethiopia-China~~
文摘In order to resolve the issue of soil erosion in East African plateau, a micro-landscape irrigation region was established in Ethiopia plateau to research status quo of agricultural demonstration site in Jari in Ethiopia and to analyze the relation between structure and function of inner elements in different landscapes of demonstration site. Furthermore, in accordance with ecology, silviculture, agriculture and economics, the ecological landscapes were classified as per landscape functions; lands returning from farming were classified and re-used; ecosystems of grassland, river, agriculture and courtyard were researched; the feasibility of ecological restoration and sustainable development in demonstration site was demonstrated; the model for rational irrigation and water conservation was proposed. The research guarantees sustainable development of agriculture and animal husbandry and provides references for undeveloped countries with similar problems.
文摘With expressway development and environment protection consciousness improving, slope protection technology with vegetation has drawn much more attention. From the perspective of ecology, Baoji-Hanzhong Expressway maximized slope protection technology with vegetation and formed attracting landscapes on basis of eco-protection. This research introduced the technology of Baoji-Hanzhong Expressway, and explored a low-cost and effective biological slopeprotection way, suitable for Baoji-Hanzhong Expressway, according to slope protection technologies, at home and abroad, with botany, water and soil conservation engineering, and architecture, which fixed and stabilized slopes, prevented rainfall scouring, and advanced slope protection development in China.