Ecosystem services valuation seeks to increase the social relevance of ecosystem characteristics, the underlying biological mechanisms that support services, by making the contribution of ecosystems to human well-bein...Ecosystem services valuation seeks to increase the social relevance of ecosystem characteristics, the underlying biological mechanisms that support services, by making the contribution of ecosystems to human well-being explicit. Economic valuation can help management by clarifying the full range of benefits and costs of proposed management actions. In the past two decades, economic valuation of wetland ecosystem services has become one of the most significant scientific priorities for wetland protection. In this paper, we provide an overview of ecosystem services, and summarize the main interdisciplinary approaches to measure and value wetland ecosystem services. We identified four main methodological gaps preventing progress on wetland valuation of ecosystem services in China, which are: 1) confusion on terminology like intermediate and final ecosystem services, 2) lack of ecological production functions to link ecosystem characteristics to final ecosystem services, 3) static valuation making it difficult to evaluate the trade-offs and synergies among ecosystem services, and 4) lack of clear guidance on relating ecological compensation programs to conservation targets. Overcoming these gaps is important to inform wetland compensation mechanisms and conservation policies. We propose future research on wetland ecosystem services in China should be focused on: 1) defining final ecosystem services based on beneficiary preferences and underlying biophysical mechanisms, 2) establishing wetland monitoring programs at specific sites to collect data on final ecosystem service indicators and ecosystem characteristic metrics to create ecological production functions for economic valuation and rescaling techniques, and 3) incorporating wetland ecosystem service values into decision-making processes to inform wetland management.展开更多
Biochar amendment and substituting chemical fertilizers with organic manure(organic substitution)have been widely reported to increase crop production and decrease reactive nitrogen(Nr)loss including nitrous oxide(N_(...Biochar amendment and substituting chemical fertilizers with organic manure(organic substitution)have been widely reported to increase crop production and decrease reactive nitrogen(Nr)loss including nitrous oxide(N_(2)O),nitric oxide(NO),and ammonia(NH3)emissions,and N runoff and leaching.However,few comprehensive evalua-tions have been performed on the environmental and economic aspects of biochar amendment or organic sub-stitution.Here,we studied the comprehensive effects of biochar amendment,organic substitution,and biochar amendment combined with organic substitution on crop production,Nr loss,and net ecosystem economic benefit(NEEB)in intensive vegetable production by integrating life-cycle assessment for Nr footprints,empirical models for NH3 volatilization and N runoff and leaching derived from peer-reviewed publications and validated by the current measurements and direct field measurement for N_(2)O and NO emissions during 5 consecutive years of vegetable crop rotations.Five fertilization treatments were applied(SN:synthetic fertilizer application;SNB:SN plus 20 t ha^(−1)biochar amendment;SNM:substituting 50%of chemical N fertilizer with organic manure;SNMB:SNM plus 20 t ha^(−1)biochar amendment;and CK:no fertilizer or biochar addition).Compared with the SN,the SNB increased vegetable yield(28.4%,p<0.05;interannually varying from−10 to 74.9%)and nitrogen use efficiency(29.2%,interannually varying from−39.7 to 150.4%),and decreased field Nr loss(45.4%,p<0.01;interannually varying from−40.3 to 78.4%),and thus improved NEEB by 7.1%;meanwhile,the SNM increased vegetable yield(11.6%,interannually varying from−5.4 to 27.1%)and nitrogen use efficiency(45.7%,p<0.05;interannually varying from 2.3 to 154%),reduced field Nr loss(34.9%,p<0.01;interannually varying from 8.4-39.0%),and thus improved NEEB by 17.8%(p<0.05)compared to the SN,being 56.0×10^(3)Chinese Yuan(CNY)ha^(−1)crop^(−1).Due to the high foreground Nr loss during organic manure production and high input costs of biochar production,the SNMB decreased the NEEB by 8.0%as compared to the SN.Moreover,the SNB and SNM improved vegetable qualities by increasing protein,soluble sugar,and vitamin C contents while decreasing nitrate content(p<0.05).Therefore,single application of biochar amendment or organic substitution would achieve better NEEB and product quality in vegetable production.展开更多
Rice-crab integrated ecosystem has been confirmed to improve the ecological environment and brought greater economic benefits.In order to know greenhouse gases methane(CH_(4))and nitrous oxide(N_(2)O)emissions in rice...Rice-crab integrated ecosystem has been confirmed to improve the ecological environment and brought greater economic benefits.In order to know greenhouse gases methane(CH_(4))and nitrous oxide(N_(2)O)emissions in ricecrab system,they were quantified from a flooding rice field in northeast China,as affected by integrated ricecrab cultivation.Three treatments with three replications each were given:(1)RC1-rice with crab(megalopa),(2)RC2-rice with crab(juvenile),(3)RM-rice only.Seasonal CH_(4) and N_(2)O fluxes were measured by closed chamber method.Compared with RM treatment,RC1 and RC2 treatments greatly enhanced the cumulative seasonal CH_(4) emissions(by 36.8%and 29.2%,respectively),and reduced the cumulative seasonal N_(2)O emissions(by 28.2%and 19.7%,respectively).Across treatments,CH_(4) represented over 97%of total global warming potential(GWP)and as a result,RC1 and RC2 treatments significantly increased the GWP than RM treatment.Although the GWP was highest in RC1 treatment,it provided highest rice yield(8780 kg/ha)and net ecosystem economic budget(NEEB,23,159 Yuan/ha)over RM(7668 kg/ha,15,130 Yuan/ha)and RC2(8042 kg/ha,18,713 Yuan/ha)treatments.To summarize,cultivation of megalopa in rice field is a better strategy to optimize the economic and environmental benefits in northeast China.展开更多
基金Under the auspices of Forestry Nonprofit Industry Scientific Research Special Project(No.201204201)National Key Technology Research and Development Program of China(No.2011BAJ07B05)
文摘Ecosystem services valuation seeks to increase the social relevance of ecosystem characteristics, the underlying biological mechanisms that support services, by making the contribution of ecosystems to human well-being explicit. Economic valuation can help management by clarifying the full range of benefits and costs of proposed management actions. In the past two decades, economic valuation of wetland ecosystem services has become one of the most significant scientific priorities for wetland protection. In this paper, we provide an overview of ecosystem services, and summarize the main interdisciplinary approaches to measure and value wetland ecosystem services. We identified four main methodological gaps preventing progress on wetland valuation of ecosystem services in China, which are: 1) confusion on terminology like intermediate and final ecosystem services, 2) lack of ecological production functions to link ecosystem characteristics to final ecosystem services, 3) static valuation making it difficult to evaluate the trade-offs and synergies among ecosystem services, and 4) lack of clear guidance on relating ecological compensation programs to conservation targets. Overcoming these gaps is important to inform wetland compensation mechanisms and conservation policies. We propose future research on wetland ecosystem services in China should be focused on: 1) defining final ecosystem services based on beneficiary preferences and underlying biophysical mechanisms, 2) establishing wetland monitoring programs at specific sites to collect data on final ecosystem service indicators and ecosystem characteristic metrics to create ecological production functions for economic valuation and rescaling techniques, and 3) incorporating wetland ecosystem service values into decision-making processes to inform wetland management.
基金the National Natural Science Foundation of China(41977078,32001213)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX21_0618,KYCX20_0591).
文摘Biochar amendment and substituting chemical fertilizers with organic manure(organic substitution)have been widely reported to increase crop production and decrease reactive nitrogen(Nr)loss including nitrous oxide(N_(2)O),nitric oxide(NO),and ammonia(NH3)emissions,and N runoff and leaching.However,few comprehensive evalua-tions have been performed on the environmental and economic aspects of biochar amendment or organic sub-stitution.Here,we studied the comprehensive effects of biochar amendment,organic substitution,and biochar amendment combined with organic substitution on crop production,Nr loss,and net ecosystem economic benefit(NEEB)in intensive vegetable production by integrating life-cycle assessment for Nr footprints,empirical models for NH3 volatilization and N runoff and leaching derived from peer-reviewed publications and validated by the current measurements and direct field measurement for N_(2)O and NO emissions during 5 consecutive years of vegetable crop rotations.Five fertilization treatments were applied(SN:synthetic fertilizer application;SNB:SN plus 20 t ha^(−1)biochar amendment;SNM:substituting 50%of chemical N fertilizer with organic manure;SNMB:SNM plus 20 t ha^(−1)biochar amendment;and CK:no fertilizer or biochar addition).Compared with the SN,the SNB increased vegetable yield(28.4%,p<0.05;interannually varying from−10 to 74.9%)and nitrogen use efficiency(29.2%,interannually varying from−39.7 to 150.4%),and decreased field Nr loss(45.4%,p<0.01;interannually varying from−40.3 to 78.4%),and thus improved NEEB by 7.1%;meanwhile,the SNM increased vegetable yield(11.6%,interannually varying from−5.4 to 27.1%)and nitrogen use efficiency(45.7%,p<0.05;interannually varying from 2.3 to 154%),reduced field Nr loss(34.9%,p<0.01;interannually varying from 8.4-39.0%),and thus improved NEEB by 17.8%(p<0.05)compared to the SN,being 56.0×10^(3)Chinese Yuan(CNY)ha^(−1)crop^(−1).Due to the high foreground Nr loss during organic manure production and high input costs of biochar production,the SNMB decreased the NEEB by 8.0%as compared to the SN.Moreover,the SNB and SNM improved vegetable qualities by increasing protein,soluble sugar,and vitamin C contents while decreasing nitrate content(p<0.05).Therefore,single application of biochar amendment or organic substitution would achieve better NEEB and product quality in vegetable production.
基金This work was supported by Agriculture Research System of Shanghai,China(Grant No.201804)Shanghai Leading Academic Discipline Project(No.Y1101)+1 种基金the AqASEM project(245020)under FP7The study was also supported by Shanghai Universities First-class Disciplines Project of Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding(No.ZF1206)。
文摘Rice-crab integrated ecosystem has been confirmed to improve the ecological environment and brought greater economic benefits.In order to know greenhouse gases methane(CH_(4))and nitrous oxide(N_(2)O)emissions in ricecrab system,they were quantified from a flooding rice field in northeast China,as affected by integrated ricecrab cultivation.Three treatments with three replications each were given:(1)RC1-rice with crab(megalopa),(2)RC2-rice with crab(juvenile),(3)RM-rice only.Seasonal CH_(4) and N_(2)O fluxes were measured by closed chamber method.Compared with RM treatment,RC1 and RC2 treatments greatly enhanced the cumulative seasonal CH_(4) emissions(by 36.8%and 29.2%,respectively),and reduced the cumulative seasonal N_(2)O emissions(by 28.2%and 19.7%,respectively).Across treatments,CH_(4) represented over 97%of total global warming potential(GWP)and as a result,RC1 and RC2 treatments significantly increased the GWP than RM treatment.Although the GWP was highest in RC1 treatment,it provided highest rice yield(8780 kg/ha)and net ecosystem economic budget(NEEB,23,159 Yuan/ha)over RM(7668 kg/ha,15,130 Yuan/ha)and RC2(8042 kg/ha,18,713 Yuan/ha)treatments.To summarize,cultivation of megalopa in rice field is a better strategy to optimize the economic and environmental benefits in northeast China.