In order to solve the problem of the invalidation of thermal parameters andoptimal running, we present an efficient soft sensor approach based on sparse online Gaussianprocesses( GP), which is based on a combination o...In order to solve the problem of the invalidation of thermal parameters andoptimal running, we present an efficient soft sensor approach based on sparse online Gaussianprocesses( GP), which is based on a combination of a Bayesian online algorithm together with asequential construction of a relevant subsample of the data to specify the prediction of the GPmodel. By an appealing parameterization and projection techniques that use the reproducing kernelHubert space (RKHS) norm, recursions for the effective parameters and a sparse Gaussianapproximation of the posterior process are obtained. The sparse representation of Gaussian processesmakes the GP-based soft sensor practical in a large dataset and real-time application. And theproposed thermalparameter soft sensor is of importance for the economical running of the powerplant.展开更多
文摘In order to solve the problem of the invalidation of thermal parameters andoptimal running, we present an efficient soft sensor approach based on sparse online Gaussianprocesses( GP), which is based on a combination of a Bayesian online algorithm together with asequential construction of a relevant subsample of the data to specify the prediction of the GPmodel. By an appealing parameterization and projection techniques that use the reproducing kernelHubert space (RKHS) norm, recursions for the effective parameters and a sparse Gaussianapproximation of the posterior process are obtained. The sparse representation of Gaussian processesmakes the GP-based soft sensor practical in a large dataset and real-time application. And theproposed thermalparameter soft sensor is of importance for the economical running of the powerplant.