This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability o...This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability of noncritical traveling wavefronts (waves with speeds c 〉 c*, where c=c* is the minimal speed) is established, when the initial perturbations around the wavefront decays to zero exponentially in space as x → -∞, but it can be allowed arbitrary large in other locations, which improves the results in[9, 18, 21].展开更多
基金supported by NSF of China(11401478)Gansu Provincial Natural Science Foundation(145RJZA220)
文摘This paper is concerned with the stability of traveling wavefronts for a population dynamics model with time delay. Combining the weighted energy method and the comparison principle, the global exponential stability of noncritical traveling wavefronts (waves with speeds c 〉 c*, where c=c* is the minimal speed) is established, when the initial perturbations around the wavefront decays to zero exponentially in space as x → -∞, but it can be allowed arbitrary large in other locations, which improves the results in[9, 18, 21].