Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice as...Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.展开更多
Identifying the main factors on spatial diff erences in net growth rate of Yesso scallop(Patinopecten yessoensis)in culture system is the key to eff ective aquaculture management and development.Coupling a 3D ecosyste...Identifying the main factors on spatial diff erences in net growth rate of Yesso scallop(Patinopecten yessoensis)in culture system is the key to eff ective aquaculture management and development.Coupling a 3D ecosystem model(ROMS-CoSiNE)with a dynamic energy budget model for scallops,a Yesso scallop culture ecosystem(YeSCE)model was established with which scallop growth was simulated with real seeding density and juvenile size from local aquaculture experiments from December 1,2012 to November 30,2013.Results show that the YeSCE model has reasonably simulated the environmental variation and scallop net growth rate in the Changhai sea area.The growth of scallops was slow in winter and midsummer and was limited mainly by temperature.Food availability was a key factor that contributed to the fast growth of the scallops during spring to early summer and in autumn.Generally,the scallops cultured in the north part of the Changhai sea area grew faster than those in the south;and the net growth rate for scallops cultured near the island was signifi cantly higher compare to the others,which is probably correlated to the spatial distribution of food availability.Based on the correlation analysis,the spatial diff erences of the net growth rate were largely aff ected by the length of the match timing of temperatures and food availability.The results of this study provide a scientifi c support for optimizing bottom culture planning and adjusting bottom culture methods.展开更多
This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and h...This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and heterotrophic bacterioplankton, nitrate, and dissolved organic carbon (DOC) in a run lasting 90 days. Except for DOC, because of poor observation precision,the major seasonal features of the vertical distribution for these components can be simulated by this model. The results show that spring bloom is just a short period of 1-2 weeks and that deposit carbon flux at the bottom interface is about 200 mg /m2 ·d in the first 20 days and then reaches its maximum of 1500mg/m2·d about 2 months later after the spring bloom.展开更多
Net Primary Productivity (NPP) is one of the important biophysical variables of vegetation activity, and it plays an important role in studying global carbon cycle, carbon source and sink of ecosystem, and spatial a...Net Primary Productivity (NPP) is one of the important biophysical variables of vegetation activity, and it plays an important role in studying global carbon cycle, carbon source and sink of ecosystem, and spatial and temporal distribution of CO2. Remote sensing can provide broad view quickly, timely and multi-temporally, which makes it an attractive and powerful tool for studying ecosystem primary productivity, at scales ranging from local to global. This paper aims to use Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate and analyze spatial and temporal distribution of NPP of the northern Hebei Province in 2001 based on Carnegie-Ames-Stanford Approach (CASA) model. The spatial distribution of Absorbed Photosynthetically Active Radiation (APAR) of vegetation and light use efficiency in three geographical subregions, that is, Bashang Plateau Region, Basin Region in the northwestern Hebei Province and Yanshan Mountainous Region in the Northern Hebei Province were analyzed, and total NPP spatial distribution of the study area in 2001 was discussed. Based on 16-day MODIS Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) product, 16-day composite NPP dynamics were calculated using CASA model; the seasonal dynamics of vegetation NPP in three subreglons were also analyzed. Result reveals that the total NPP of the study area in 2001 was 25.1877 × 10^6gC/(m^2.a), and NPP in 2001 ranged from 2 to 608gC/(m^2-a), with an average of 337.516gC/(m^2.a). NPP of the study area in 2001 accumulated mainly from May to September (DOY 129-272), high NIP values appeared from June to August (DOY 177-204), and the maximum NPP appeared from late July to mid-August (DOY 209-224).展开更多
Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V...Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V) and climatic factors (mean annual actual evapotranspiration, E) was developed for Chinese pine (Pinus tabulaeformis) forest by making full use of Forest Inventory Data (FID) and dynamically assessing forest productivity. The NPP of Chinese pine forest was estimated by using this model and the fourth FID (1989–1993), and the spatial pattern of NPP of Chinese pine forest was given by Geography Information System (GIS) software. The results indicated that mean NPP value, of Chinese pine forest was 7.82 t m?2·a?1 and varied at the range of 3.32–11.87 t hm?2·a?1. NPP distribution of Chinese pine forests was significantly different in different regions, higher in the south and lower in the north of China. In terms of the main distribution regions of Chinese pine, the NPPs of Chinese pine forest in Shanxi and Shaanxi provinces were in middle level, with an average NPP of 7.4 t hm?2·a?1, that in the southern and the eastern parts (e.g. Shichuang Hunan, Henan, and Liaoning provinces) was higher (over 7.7 t hm?2·a?1), and that in the northern part and western part (e.g. Neimenggu and Ningxia provinces) was lower (below 5 t hm?2·a?1). This study provides an efficient way for using FID to understand the dynamics of foest NPP and evaluate its effects on global climate change. Keywords Forest NPP - Forest inventory data - Chinese pine forest - Climatic and biotic NPP model - Spatial distribution pattern CLC number S727.22 - S757.2 Document code A Foundation item: This study was supported by the National Natural Science Foundation of China (Nos. 30028001, 49905005), National Key Basic Research Specific Foundation (G1999043407); the Chinese Academy of Sciences (KSC2-1-07).Biography: ZHAO Min (1973-), female, Ph. D. in Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, P. R. China.Responsible editor: Zhu Hong展开更多
This paper aims at a review of the work carried out to date on the adjoint assimilation of data in marine ecosys-tem models since 1995. The structure and feature of the adjoint assimilation in marine ecosystem models ...This paper aims at a review of the work carried out to date on the adjoint assimilation of data in marine ecosys-tem models since 1995. The structure and feature of the adjoint assimilation in marine ecosystem models are also introduced. To illustrate the application of the adjoint technique and its merits, a 4-variable ecosystem model coupled with a 3-D physical model is established for the Bohai Sea and the Yellow Sea. The chlorophyll concentration data derived from the SeaWiFS o-cean colour data are assimilated in the model with the technique. Some results are briefly presented.展开更多
Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations...Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.展开更多
Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem,including tumor cells and microenvironment.Breast cancer stem cells(BCSCs)cons...Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem,including tumor cells and microenvironment.Breast cancer stem cells(BCSCs)constitute a small population of cancer cells with unique characteristics,including their capacity for self-renewal and differentiation.Studies have shown that BCSCs not only drive tumorigenesis but also play a crucial role in promoting metastasis in breast cancer.The tumor microenvironment(TME),composed of stromal cells,immune cells,blood vessel cells,fibroblasts,and microbes in proximity to cancer cells,is increasingly recognized for its crosstalk with BCSCs and role in BCSC survival,growth,and dissemination,thereby influencing metastatic ability.Hence,a thorough understanding of BCSCs and the TME is critical for unraveling the mechanisms underlying breast cancer metastasis.In this review,we summarize current knowledge on the roles of BCSCs and the TME in breast cancer metastasis,as well as the underlying regulatory mechanisms.Furthermore,we provide an overview of relevant mouse models used to study breast cancer metastasis,as well as treatment strategies and clinical trials addressing BCSC-TME interactions during metastasis.Overall,this study provides valuable insights for the development of effective therapeutic strategies to reduce breast cancer metastasis.展开更多
Dependability analysis of nuclear power plants information and control systems is an important but challenging task. There are several techniques that can be applied for safety and dependability assessments. All of th...Dependability analysis of nuclear power plants information and control systems is an important but challenging task. There are several techniques that can be applied for safety and dependability assessments. All of them have limitations and can't be easily applied in most cases. Sometimes combined usage of different methods is the most appropriate solution. In this paper we consider techniques of dependability assessment and achievement developed and used by research-and-production corporation "Radiy". The elements of the assessment methodology are briefly described.展开更多
Most terrestrial models synchronously calculate net primary productivity(NPP)using the input climate variable,without the consideration of time-lag effects,which may increase the uncertainty of NPP simulation.Based on...Most terrestrial models synchronously calculate net primary productivity(NPP)using the input climate variable,without the consideration of time-lag effects,which may increase the uncertainty of NPP simulation.Based on Normalized Difference Vegetation Index(NDVI)and climate data,we used the time lag cross-correlation method to investigate the time-lag effects of temperature,precipitation,and solar radiation in different seasons on NDVI values.Then,we selected the Carnegie-Ames-Stanford approach(CASA)model to estimate the NPP of China from 2002 to 2017.The results showed that the response of vegetation growth to climate factors had an obvious lag effect,with the longest time lag in solar radiation and the shortest time lag in temperature.The time lag of vegetation to the climate variable showed great tempo-spatial heterogeneities among vegetation types,climate types,and vegetation growth periods.Based on the validation using eddy covariance data,the results showed that the simulation accuracy of the CASA model considering the time-lag effects was effectively improved.By considering the time-lag effects,the average total amount of NPP modeled by CASA during 2001-2017 in China was 3.977 PgC a^(−1),which is 11.37%higher than that of the original model.This study highlights the importance of considering the time lag for the simulation of vegetation growth,and provides a useful tool for the improvement of the vegetation productivity model.展开更多
Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i...Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.展开更多
Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implicatio...Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.展开更多
Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resul...Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resulting in biodiversity and habitat loss,environmental pollution,and the depletion of natural resources.In response to these environmental challenges,the Sustainable Development Goals(SDGs)were proposed.Given the pressing need to address these issues,understanding the changes in ESs under the SDGs is crucial for formulating specific ecological strategies.In this study,we first analyzed land use and cover change in the Zhejiang coasts of China during 2000–2020.Then,we investigated the spatiotemporal configuration of ESs by integrating carbon storage(CS),soil retention(SR),habitat quality(HQ)and water yield(WY)using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.The driving mechanisms of ESs,which varied by space and time,were also explored using the Geo-detector method.The results revealed that,over the past two decades:1)the Zhejiang coasts have experienced a significant increase of 2783.72 km^(2) in built-up land areas and a continuous decrease in farmland areas due to rapid urbanization;2)owing to higher precipitation,extensive vegetation cover,and reduced anthropogenic disturbances,forests emerge as a crucial land use type for maintaining ecosystem services such as HQ,CS,WY,and SR;3)ESs have generally declined across the entire Zhejiang coasts,with a significant decrease observed in the northern areas and an increase in the southern areas spatially;4)the expansion of built-up land areas emerged as the primary factor affecting ecosystem services,while the vegetation factor has been increasingly significant and is expected to become predominant in the near future.Our study provides insights of understanding of ecosystem service theory and emphasizing the importance of preserving biodiversity for long-term sustainable development,and valuable scientific references to support the ecological management decision-making for local governments.展开更多
Generative AI,represented by GPT(Generative Pre-trained Transformer),is now leading the technological revolution and is reconstructing the journalism and communication industries'ecosystems because of its powerful...Generative AI,represented by GPT(Generative Pre-trained Transformer),is now leading the technological revolution and is reconstructing the journalism and communication industries'ecosystems because of its powerful generative capacity and diverse range of outputs.While GPT is busy revolutionizing and innovating the production of news content,working patterns,and operation modes,it has also given rise to ethical concerns in regard to news authenticity,data security,humanistic values,and other related aspects.Therefore,it is imperative to initiate strategies and approaches,such as establishing a mechanism for verifying information authenticity,enhancing data security and privacy regulations,and instituting an ethical supervision and governance framework for AI,in order to facilitate the systematic advancement of AI-based news production while reinstating public trust.展开更多
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this...Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.展开更多
基金supported by North Pacific Research Board(NPRB) grant 607(paper contribution number 202)NSF grant ARC-0652838+1 种基金DOE/EPSCoR grant DE-FG02-08ER46502.This is GLERL Contribution No.1499 and DOE/EPS-CoRInternational Arctic Research Center,University of Alaska Fairbanks supported this study through the JAMSTEC-IARC Research Agreement.
文摘Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.
基金Supported by the National Key Research and Development Program of China(Nos.2017YFC1404403,2016YFC1401602)the National Natural Science Foundation of China(No.41806018)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050502)。
文摘Identifying the main factors on spatial diff erences in net growth rate of Yesso scallop(Patinopecten yessoensis)in culture system is the key to eff ective aquaculture management and development.Coupling a 3D ecosystem model(ROMS-CoSiNE)with a dynamic energy budget model for scallops,a Yesso scallop culture ecosystem(YeSCE)model was established with which scallop growth was simulated with real seeding density and juvenile size from local aquaculture experiments from December 1,2012 to November 30,2013.Results show that the YeSCE model has reasonably simulated the environmental variation and scallop net growth rate in the Changhai sea area.The growth of scallops was slow in winter and midsummer and was limited mainly by temperature.Food availability was a key factor that contributed to the fast growth of the scallops during spring to early summer and in autumn.Generally,the scallops cultured in the north part of the Changhai sea area grew faster than those in the south;and the net growth rate for scallops cultured near the island was signifi cantly higher compare to the others,which is probably correlated to the spatial distribution of food availability.Based on the correlation analysis,the spatial diff erences of the net growth rate were largely aff ected by the length of the match timing of temperatures and food availability.The results of this study provide a scientifi c support for optimizing bottom culture planning and adjusting bottom culture methods.
文摘This paper’s simple ecological model to simulate the ecosystem variation and the vertical carbon flux in the central part of the East China Sea in spring, inter-reated the phytoplankton, zooplankton,autotrophic and heterotrophic bacterioplankton, nitrate, and dissolved organic carbon (DOC) in a run lasting 90 days. Except for DOC, because of poor observation precision,the major seasonal features of the vertical distribution for these components can be simulated by this model. The results show that spring bloom is just a short period of 1-2 weeks and that deposit carbon flux at the bottom interface is about 200 mg /m2 ·d in the first 20 days and then reaches its maximum of 1500mg/m2·d about 2 months later after the spring bloom.
基金Under the auspices of the National Natural Science Foundation of China (No. 40571117), the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-338), Research foundation of the State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Applications, Chinese Academy of Sciences (KQ060006)
文摘Net Primary Productivity (NPP) is one of the important biophysical variables of vegetation activity, and it plays an important role in studying global carbon cycle, carbon source and sink of ecosystem, and spatial and temporal distribution of CO2. Remote sensing can provide broad view quickly, timely and multi-temporally, which makes it an attractive and powerful tool for studying ecosystem primary productivity, at scales ranging from local to global. This paper aims to use Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimate and analyze spatial and temporal distribution of NPP of the northern Hebei Province in 2001 based on Carnegie-Ames-Stanford Approach (CASA) model. The spatial distribution of Absorbed Photosynthetically Active Radiation (APAR) of vegetation and light use efficiency in three geographical subregions, that is, Bashang Plateau Region, Basin Region in the northwestern Hebei Province and Yanshan Mountainous Region in the Northern Hebei Province were analyzed, and total NPP spatial distribution of the study area in 2001 was discussed. Based on 16-day MODIS Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) product, 16-day composite NPP dynamics were calculated using CASA model; the seasonal dynamics of vegetation NPP in three subreglons were also analyzed. Result reveals that the total NPP of the study area in 2001 was 25.1877 × 10^6gC/(m^2.a), and NPP in 2001 ranged from 2 to 608gC/(m^2-a), with an average of 337.516gC/(m^2.a). NPP of the study area in 2001 accumulated mainly from May to September (DOY 129-272), high NIP values appeared from June to August (DOY 177-204), and the maximum NPP appeared from late July to mid-August (DOY 209-224).
基金This study was supported by the National Natural Science Foundation of China (Nos. 30028001 49905005)+1 种基金 National Key Basic Re-search Specific Foundation (G1999043407) the Chinese Acade
文摘Accurately estimating forest net primary productivity (NPP) plays an important role in study of global carbon budget. A NPP model reflecting the synthetic effects of both biotic (forest stand age, A and stem volume, V) and climatic factors (mean annual actual evapotranspiration, E) was developed for Chinese pine (Pinus tabulaeformis) forest by making full use of Forest Inventory Data (FID) and dynamically assessing forest productivity. The NPP of Chinese pine forest was estimated by using this model and the fourth FID (1989–1993), and the spatial pattern of NPP of Chinese pine forest was given by Geography Information System (GIS) software. The results indicated that mean NPP value, of Chinese pine forest was 7.82 t m?2·a?1 and varied at the range of 3.32–11.87 t hm?2·a?1. NPP distribution of Chinese pine forests was significantly different in different regions, higher in the south and lower in the north of China. In terms of the main distribution regions of Chinese pine, the NPPs of Chinese pine forest in Shanxi and Shaanxi provinces were in middle level, with an average NPP of 7.4 t hm?2·a?1, that in the southern and the eastern parts (e.g. Shichuang Hunan, Henan, and Liaoning provinces) was higher (over 7.7 t hm?2·a?1), and that in the northern part and western part (e.g. Neimenggu and Ningxia provinces) was lower (below 5 t hm?2·a?1). This study provides an efficient way for using FID to understand the dynamics of foest NPP and evaluate its effects on global climate change. Keywords Forest NPP - Forest inventory data - Chinese pine forest - Climatic and biotic NPP model - Spatial distribution pattern CLC number S727.22 - S757.2 Document code A Foundation item: This study was supported by the National Natural Science Foundation of China (Nos. 30028001, 49905005), National Key Basic Research Specific Foundation (G1999043407); the Chinese Academy of Sciences (KSC2-1-07).Biography: ZHAO Min (1973-), female, Ph. D. in Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, P. R. China.Responsible editor: Zhu Hong
文摘This paper aims at a review of the work carried out to date on the adjoint assimilation of data in marine ecosys-tem models since 1995. The structure and feature of the adjoint assimilation in marine ecosystem models are also introduced. To illustrate the application of the adjoint technique and its merits, a 4-variable ecosystem model coupled with a 3-D physical model is established for the Bohai Sea and the Yellow Sea. The chlorophyll concentration data derived from the SeaWiFS o-cean colour data are assimilated in the model with the technique. Some results are briefly presented.
基金This research was funded by the National Natural Science Foundation of China(Grant Nos.31870426).
文摘Parameterization is a critical step in modelling ecosystem dynamics.However,assigning parameter values can be a technical challenge for structurally complex natural plant communities;uncertainties in model simulations often arise from inappropriate model parameterization.Here we compared five methods for defining community-level specific leaf area(SLA)and leaf C:N across nine contrasting forest sites along the North-South Transect of Eastern China,including biomass-weighted average for the entire plant community(AP_BW)and four simplified selective sampling(biomass-weighted average over five dominant tree species[5DT_BW],basal area weighted average over five dominant tree species[5DT_AW],biomass-weighted average over all tree species[AT_BW]and basal area weighted average over all tree species[AT_AW]).We found that the default values for SLA and leaf C:N embedded in the Biome-BGC v4.2 were higher than the five computational methods produced across the nine sites,with deviations ranging from 28.0 to 73.3%.In addition,there were only slight deviations(<10%)between the whole plant community sampling(AP_BW)predicted NPP and the four simplified selective sampling methods,and no significant difference between the predictions of AT_BW and AP_BW except the Shennongjia site.The findings in this study highlights the critical importance of computational strategies for community-level parameterization in ecosystem process modelling,and will support the choice of parameterization methods.
基金supported by the National Key Research and Development Program of China(2023YFC2506400,2020YFA0112300)National Natural Science Foundation of China(82230103,81930075,82073267,82203399,82372689)+1 种基金Program for Outstanding Leading Talents in ShanghaiInnovative Research Team of High-level Local University in Shanghai。
文摘Breast cancer metastasis is responsible for most breast cancer-related deaths and is influenced by many factors within the tumor ecosystem,including tumor cells and microenvironment.Breast cancer stem cells(BCSCs)constitute a small population of cancer cells with unique characteristics,including their capacity for self-renewal and differentiation.Studies have shown that BCSCs not only drive tumorigenesis but also play a crucial role in promoting metastasis in breast cancer.The tumor microenvironment(TME),composed of stromal cells,immune cells,blood vessel cells,fibroblasts,and microbes in proximity to cancer cells,is increasingly recognized for its crosstalk with BCSCs and role in BCSC survival,growth,and dissemination,thereby influencing metastatic ability.Hence,a thorough understanding of BCSCs and the TME is critical for unraveling the mechanisms underlying breast cancer metastasis.In this review,we summarize current knowledge on the roles of BCSCs and the TME in breast cancer metastasis,as well as the underlying regulatory mechanisms.Furthermore,we provide an overview of relevant mouse models used to study breast cancer metastasis,as well as treatment strategies and clinical trials addressing BCSC-TME interactions during metastasis.Overall,this study provides valuable insights for the development of effective therapeutic strategies to reduce breast cancer metastasis.
文摘Dependability analysis of nuclear power plants information and control systems is an important but challenging task. There are several techniques that can be applied for safety and dependability assessments. All of them have limitations and can't be easily applied in most cases. Sometimes combined usage of different methods is the most appropriate solution. In this paper we consider techniques of dependability assessment and achievement developed and used by research-and-production corporation "Radiy". The elements of the assessment methodology are briefly described.
基金National Natural Science Foundation of China,No.42161058The State Key Laboratory of Cryospheric Science,No.SKLCS-ZZ-2022The West Light Foundation of the Chinese Academy of Sciences。
文摘Most terrestrial models synchronously calculate net primary productivity(NPP)using the input climate variable,without the consideration of time-lag effects,which may increase the uncertainty of NPP simulation.Based on Normalized Difference Vegetation Index(NDVI)and climate data,we used the time lag cross-correlation method to investigate the time-lag effects of temperature,precipitation,and solar radiation in different seasons on NDVI values.Then,we selected the Carnegie-Ames-Stanford approach(CASA)model to estimate the NPP of China from 2002 to 2017.The results showed that the response of vegetation growth to climate factors had an obvious lag effect,with the longest time lag in solar radiation and the shortest time lag in temperature.The time lag of vegetation to the climate variable showed great tempo-spatial heterogeneities among vegetation types,climate types,and vegetation growth periods.Based on the validation using eddy covariance data,the results showed that the simulation accuracy of the CASA model considering the time-lag effects was effectively improved.By considering the time-lag effects,the average total amount of NPP modeled by CASA during 2001-2017 in China was 3.977 PgC a^(−1),which is 11.37%higher than that of the original model.This study highlights the importance of considering the time lag for the simulation of vegetation growth,and provides a useful tool for the improvement of the vegetation productivity model.
基金This research was funded by the Key Laboratory for Sustainable Development of Xinjiang's Historical and Cultural Tourism,Xinjiang University,China(LY2022-06)the Tianchi Talent Project.
文摘Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.
基金supported by the Innovation Capability Support Program of Shaanxi Province,China(2023-CX-RKX-102)the Key Research and Development Program of Shaanxi Province,China(2022FP-34)+1 种基金the Open Foundation of the Key Laboratory of Natural Resource Coupling Process and Effects(2023KFKTB008)the Open Fund of Shaanxi Key Laboratory of Land Consolidation,China(300102352502).
文摘Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.
基金Under the auspices of the National Natural Science Fundation (No.41901121,42276234)Open Funding of Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research (No.LHGTXT-2024-004)+1 种基金Science and Technology Major Project of Ningbo (No.2022Z181)Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources (No.2023CZEPK04)。
文摘Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resulting in biodiversity and habitat loss,environmental pollution,and the depletion of natural resources.In response to these environmental challenges,the Sustainable Development Goals(SDGs)were proposed.Given the pressing need to address these issues,understanding the changes in ESs under the SDGs is crucial for formulating specific ecological strategies.In this study,we first analyzed land use and cover change in the Zhejiang coasts of China during 2000–2020.Then,we investigated the spatiotemporal configuration of ESs by integrating carbon storage(CS),soil retention(SR),habitat quality(HQ)and water yield(WY)using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.The driving mechanisms of ESs,which varied by space and time,were also explored using the Geo-detector method.The results revealed that,over the past two decades:1)the Zhejiang coasts have experienced a significant increase of 2783.72 km^(2) in built-up land areas and a continuous decrease in farmland areas due to rapid urbanization;2)owing to higher precipitation,extensive vegetation cover,and reduced anthropogenic disturbances,forests emerge as a crucial land use type for maintaining ecosystem services such as HQ,CS,WY,and SR;3)ESs have generally declined across the entire Zhejiang coasts,with a significant decrease observed in the northern areas and an increase in the southern areas spatially;4)the expansion of built-up land areas emerged as the primary factor affecting ecosystem services,while the vegetation factor has been increasingly significant and is expected to become predominant in the near future.Our study provides insights of understanding of ecosystem service theory and emphasizing the importance of preserving biodiversity for long-term sustainable development,and valuable scientific references to support the ecological management decision-making for local governments.
基金the phased achievement of the subject“Research on Deepening the Construction of‘Smart Chengdu’and Enhancing the Governance Efficiency of Megacities” (2023CS120)a key project under Chengdu’s Philosophy and Social Science Planning Program for 2023。
文摘Generative AI,represented by GPT(Generative Pre-trained Transformer),is now leading the technological revolution and is reconstructing the journalism and communication industries'ecosystems because of its powerful generative capacity and diverse range of outputs.While GPT is busy revolutionizing and innovating the production of news content,working patterns,and operation modes,it has also given rise to ethical concerns in regard to news authenticity,data security,humanistic values,and other related aspects.Therefore,it is imperative to initiate strategies and approaches,such as establishing a mechanism for verifying information authenticity,enhancing data security and privacy regulations,and instituting an ethical supervision and governance framework for AI,in order to facilitate the systematic advancement of AI-based news production while reinstating public trust.
基金supported by the Innovation Projects for Overseas Returnees of Ningxia Hui Autonomous Region-Study on Multi-Scenario Land Use Optimization and Carbon Storage in the Ningxia Section of Yellow River Basin(202303)the National Natural Science Foundation of China(42067022,41761066)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC03024)。
文摘Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.