A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete...A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.展开更多
Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for...Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time.展开更多
With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, le...With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.展开更多
Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies...Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data.展开更多
By combining multiscale stationary wavelet analysis with fuzzy c-means, a robust edge detection algorithm is presented. Based on the translation invafiance built in multiscale stationary wavelet transform, components ...By combining multiscale stationary wavelet analysis with fuzzy c-means, a robust edge detection algorithm is presented. Based on the translation invafiance built in multiscale stationary wavelet transform, components in different transformed sub-images corresponding to a pixel are employed to form a feature vector of the pixel. All the feature vectors are classified with unsupervised fuzzy c-means to segment the image, and then the edge pixels are checked out by the Canny detector. A series of images contaminated with different intensive Gaussian noises are used to test the novel algorithm. Experiments show that fairly precise edges can be checked out robustly from those images with fairly intensive noise by the proposed algorithm.展开更多
This paper presents an algorithm of edge detection in image processing. A new entropy operator and threshold estimation technique are effectively proposed. The algorithm overcomes some drawbacks of Shiozaki operator. ...This paper presents an algorithm of edge detection in image processing. A new entropy operator and threshold estimation technique are effectively proposed. The algorithm overcomes some drawbacks of Shiozaki operator. It not only has higher speed but also can extract the edge better. Finally, an example of 2D image is given to demonstrate the usefulness and advantages of the algorithm.展开更多
Based upon the maximum entropy theorem of information theory, a novel fuzzy approach for edge detection is presented. Firstly, a definition of fuzzy partition entropy is proposed after introducing the concepts of fu...Based upon the maximum entropy theorem of information theory, a novel fuzzy approach for edge detection is presented. Firstly, a definition of fuzzy partition entropy is proposed after introducing the concepts of fuzzy probability and fuzzy partition. The relation of the probability partition and the fuzzy c-partition of the image gradient are used in the algorithm. Secondly, based on the conditional probabilities and the fuzzy partition, the optimal thresholding is searched adaptively through the maximum fuzzy entropy principle, and then the edge image is obtained. Lastly, an edge-enhancing procedure is executed on the edge image. The experimental results show that the proposed approach performs well.展开更多
Tobacco leaf shapes including the length,width,area,perimeter and roundness parameters and so on,Only obtain exact boundaries of the leaf information to calculate a large number of leaf parameters.This paper introduce...Tobacco leaf shapes including the length,width,area,perimeter and roundness parameters and so on,Only obtain exact boundaries of the leaf information to calculate a large number of leaf parameters.This paper introduces the classical edge detection Methods,bug method is used to track the boundaries of tobacco leaf extractly.The test shows that the algorithm has a good edge extraction capability.展开更多
This paper describes a technology of dynamic display moving image by computer monitor,which is initially used in the design of tool detection system. The paper presents the hardware and software principie and edge det...This paper describes a technology of dynamic display moving image by computer monitor,which is initially used in the design of tool detection system. The paper presents the hardware and software principie and edge detection process. The way of marking edge point coordinates and stability of moving image also is analyzed. The method reforms the conventional design of the 2-D vision detection system. Moreover,it facilitates the design of the systematic mechanical construction,is convenient to compile instrument systemsoftware,and realizes to detect and track display image simultaneously. By the work,the tool detection system is improved to practical application.展开更多
Lifting scheme is a useful and very general technique for constructing wavelet decomposition. The paper adapts the lifting into redundant lifting to obtain shift invariant wavelet transform. ...Lifting scheme is a useful and very general technique for constructing wavelet decomposition. The paper adapts the lifting into redundant lifting to obtain shift invariant wavelet transform. In prediction and update stages of the lifting morphological operator is adopted for preserving local maxima of a signal over several scales, which is particularly useful in wavelet\|based signal detec tion. The new transform presented in the paper is applied in multiresoluti on edge detection of medical image and experim ent results are given to show better performance and applicable potentiali ty.展开更多
Most edge-detection methods rely on calculating gradient derivatives of the potential field, a process that is easily affected by noise and is therefore of low stability. We propose a new edge-detection method named c...Most edge-detection methods rely on calculating gradient derivatives of the potential field, a process that is easily affected by noise and is therefore of low stability. We propose a new edge-detection method named correlation coefficient of multidirectional standard deviations(CCMS) that is solely based on statistics. First, we prove the reliability of the proposed method using a single model and then a combination of models. The proposed method is evaluated by comparing the results with those obtained by other edge-detection methods. The CCMS method offers outstanding recognition, retains the sharpness of details, and has low sensitivity to noise. We also applied the CCMS method to Bouguer anomaly data of a potash deposit in Laos. The applicability of the CCMS method is shown by comparing the inferred tectonic framework to that inferred from remote sensing(RS) data.展开更多
A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled conto...A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.展开更多
Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method ...Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators axe also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.展开更多
To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed b...To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.展开更多
This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection alg...This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection algorithm where image pixels are defined as individuals of population.First,the computing model of MNGA is designed to perform mem-computing,which brings new possibility of the hardware implementation of GA.Secondly,MNGA-based edge detection integrating image filter and GA operator deployed by MN is proposed.Finally,simulation results demonstrate that the figure of merit(FoM)of our model is better than the latest memristor-based swarm intelligence.In summary,a new way is found to build proper matching of memristor to GA and aid image edge detection.展开更多
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected...A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.展开更多
The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based...The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate.展开更多
To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform ...To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM).展开更多
In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detec...In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detection algorithm is proposed. The local maximum modulus is extracted by linear interpolation in wavelet domain. With the analysis on histogram, the image is filtered with an adaptive dual threshold method, which effectively detects the contours of small structures as well as the boundaries of large objects. A wavelet domain's propagation function is used to further select weak edges. Experimental results have shown the self adaptivity of the threshold to images having the same kind of histogram, and the efficiency even in noise tampered images.展开更多
A new edge detection method combining the scanning window central edge (SWCE) detector and an improved active contour model is proposed. The method first emploies the SWCE detector based on the difference of area pi...A new edge detection method combining the scanning window central edge (SWCE) detector and an improved active contour model is proposed. The method first emploies the SWCE detector based on the difference of area pixel value means to perform an optimal edge detection, and then proposes an improved active contour model with modified energy functions to refine the location of the edges. The initial nodes of the improved active contour model are automatically found from the vectorised results of the SWCE detector. Tests on simulated speckled images and real airborne SAR images show that the combined method can benefit from the advantages of the both techniques and get satisfactory edge detection and localization abilities at the same time.展开更多
基金supported by the Key Area R&D Program of Guangdong Province (Grant No.2022B0701180001)the National Natural Science Foundation of China (Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China (Grant Nos.2019B010140002 and 2020B111110002)the Guangdong-Hong Kong-Macao Joint Innovation Field Project (Grant No.2021A0505080006)。
文摘A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.
基金financially supported by the National Council for Scientific and Technological Development(CNPq,Brazil),Swedish-Brazilian Research and Innovation Centre(CISB),and Saab AB under Grant No.CNPq:200053/2022-1the National Council for Scientific and Technological Development(CNPq,Brazil)under Grants No.CNPq:312924/2017-8 and No.CNPq:314660/2020-8.
文摘Unmanned aerial vehicles(UAVs)have been widely used in military,medical,wireless communications,aerial surveillance,etc.One key topic involving UAVs is pose estimation in autonomous navigation.A standard procedure for this process is to combine inertial navigation system sensor information with the global navigation satellite system(GNSS)signal.However,some factors can interfere with the GNSS signal,such as ionospheric scintillation,jamming,or spoofing.One alternative method to avoid using the GNSS signal is to apply an image processing approach by matching UAV images with georeferenced images.But a high effort is required for image edge extraction.Here a support vector regression(SVR)model is proposed to reduce this computational load and processing time.The dynamic partial reconfiguration(DPR)of part of the SVR datapath is implemented to accelerate the process,reduce the area,and analyze its granularity by increasing the grain size of the reconfigurable region.Results show that the implementation in hardware is 68 times faster than that in software.This architecture with DPR also facilitates the low power consumption of 4 mW,leading to a reduction of 57%than that without DPR.This is also the lowest power consumption in current machine learning hardware implementations.Besides,the circuitry area is 41 times smaller.SVR with Gaussian kernel shows a success rate of 99.18%and minimum square error of 0.0146 for testing with the planning trajectory.This system is useful for adaptive applications where the user/designer can modify/reconfigure the hardware layout during its application,thus contributing to lower power consumption,smaller hardware area,and shorter execution time.
文摘With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.
基金supported by the China Postdoctoral Science Foundation (No.2014M551188)the Deep Exploration in China Sinoprobe-09-01 (No.201011078)
文摘Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data.
文摘By combining multiscale stationary wavelet analysis with fuzzy c-means, a robust edge detection algorithm is presented. Based on the translation invafiance built in multiscale stationary wavelet transform, components in different transformed sub-images corresponding to a pixel are employed to form a feature vector of the pixel. All the feature vectors are classified with unsupervised fuzzy c-means to segment the image, and then the edge pixels are checked out by the Canny detector. A series of images contaminated with different intensive Gaussian noises are used to test the novel algorithm. Experiments show that fairly precise edges can be checked out robustly from those images with fairly intensive noise by the proposed algorithm.
文摘This paper presents an algorithm of edge detection in image processing. A new entropy operator and threshold estimation technique are effectively proposed. The algorithm overcomes some drawbacks of Shiozaki operator. It not only has higher speed but also can extract the edge better. Finally, an example of 2D image is given to demonstrate the usefulness and advantages of the algorithm.
文摘Based upon the maximum entropy theorem of information theory, a novel fuzzy approach for edge detection is presented. Firstly, a definition of fuzzy partition entropy is proposed after introducing the concepts of fuzzy probability and fuzzy partition. The relation of the probability partition and the fuzzy c-partition of the image gradient are used in the algorithm. Secondly, based on the conditional probabilities and the fuzzy partition, the optimal thresholding is searched adaptively through the maximum fuzzy entropy principle, and then the edge image is obtained. Lastly, an edge-enhancing procedure is executed on the edge image. The experimental results show that the proposed approach performs well.
基金Supported by Key Technologies R & D Program of Henan Province(082102210065)Natural Science Research Project of Henan Educational Committee(2007210005)~~
文摘Tobacco leaf shapes including the length,width,area,perimeter and roundness parameters and so on,Only obtain exact boundaries of the leaf information to calculate a large number of leaf parameters.This paper introduces the classical edge detection Methods,bug method is used to track the boundaries of tobacco leaf extractly.The test shows that the algorithm has a good edge extraction capability.
文摘This paper describes a technology of dynamic display moving image by computer monitor,which is initially used in the design of tool detection system. The paper presents the hardware and software principie and edge detection process. The way of marking edge point coordinates and stability of moving image also is analyzed. The method reforms the conventional design of the 2-D vision detection system. Moreover,it facilitates the design of the systematic mechanical construction,is convenient to compile instrument systemsoftware,and realizes to detect and track display image simultaneously. By the work,the tool detection system is improved to practical application.
文摘Lifting scheme is a useful and very general technique for constructing wavelet decomposition. The paper adapts the lifting into redundant lifting to obtain shift invariant wavelet transform. In prediction and update stages of the lifting morphological operator is adopted for preserving local maxima of a signal over several scales, which is particularly useful in wavelet\|based signal detec tion. The new transform presented in the paper is applied in multiresoluti on edge detection of medical image and experim ent results are given to show better performance and applicable potentiali ty.
基金supported by the National Hi-Tech Research and Development Program of China(863 Program)(No.2006AA06Z107)the National Natural Science Foundation of China(No.40930314)
文摘Most edge-detection methods rely on calculating gradient derivatives of the potential field, a process that is easily affected by noise and is therefore of low stability. We propose a new edge-detection method named correlation coefficient of multidirectional standard deviations(CCMS) that is solely based on statistics. First, we prove the reliability of the proposed method using a single model and then a combination of models. The proposed method is evaluated by comparing the results with those obtained by other edge-detection methods. The CCMS method offers outstanding recognition, retains the sharpness of details, and has low sensitivity to noise. We also applied the CCMS method to Bouguer anomaly data of a potash deposit in Laos. The applicability of the CCMS method is shown by comparing the inferred tectonic framework to that inferred from remote sensing(RS) data.
基金The National Key Technologies R&D Program during the 12th Five-Year Period of China(No.2012BAJ23B02)Science and Technology Support Program of Jiangsu Province(No.BE2010606)
文摘A novel algorithm for image edge detection is presented. This algorithm combines the nonsubsampled contourlet transform and the mathematical morphology. First, the source image is decomposed by the nonsubsampled contourlet transform into multi-scale and multi-directional subbands. Then the edges in the high-frequency and low-frequency sub-bands are respectively extracted by the dualthreshold modulus maxima method and the mathematical morphology operator. Finally, the edges from the high- frequency and low-frequency sub-bands are integrated to the edges of the source image, which are refined, and isolated points are excluded to achieve the edges of the source image. The simulation results show that the proposed algorithm can effectively suppress noise, eliminate pseudo-edges and overcome the adverse effects caused by uneven illumination to a certain extent. Compared with the traditional methods such as LoG, Sobel, and Carmy operators and the modulus maxima algorithm, the proposed method can maintain sufficient positioning accuracy and edge details, and it can also make an improvement in the completeness, smoothness and clearness of the outline.
文摘Combining beamlet transform with steerable filters, a new edge detection method based on line gradient is proposed. Compared with operators based on point local properties, the edge-detection results with this method achieve higher SNR and position accuracy, and are quite helpful for image registration, object identification, etc. Some edge-detection experiments on optical and SAR images that demonstrate the significant improvement over classical edge operators axe also presented. Moreover, the template matching result based on edge information of optical reference image and SAR image also proves the validity of this method.
基金Supported by the CRSRI Open Research Program(CKWV2013225/KY)the Open Project Foundation of Key Laboratory of the Yellow River Sediment of Ministry of Water Resource(2014006)+2 种基金the Open Project Foundation of Key Lab of Port,Waterway and Sedimentation Engineering of the Ministry of Transportthe State Key Lab of Urban Water Resource and Environment(HIT)(ES201409)the Priority Academic Program Development of Jiangsu Higher Education Institution
文摘To cope with the problems that edge detection operators are liable to make the detected edges too blurry for synthetic aperture radar(SAR)images,an edge detection method for detecting river in SAR images is proposed based on contourlet modulus maxima and improved mathematical morphology.The SAR image is firstly transformed to a contourlet domain.According to the directional information and gradient information of directional subband of contourlet transform,the modulus maximum and the improved mathematical morphology are used to detect high frequency and low frequency sub-image edges,respectively.Subsequently,the edges of river in SAR image are obtained after fusing the high frequency sub-image and the low frequency sub-image.Experimental results demonstrate that the proposed edge detection method can obtain more accurate edge location and reduce false edges,compared with the Canny method,the method based on wavelet and Canny,the method based on contourlet modulus maxima,and the method based on improved(ROEWA).The obtained river edges are complete and clear.
基金This work was supported by the National Natural Science Foundation of China(61550110248)the Sichuan Science and Technology Department project(2019YFG0190)the University of Electronic Science and Technology of China project(H04W170186).
文摘This paper proposes a mem-computing model of memristive network-based genetic algorithm(MNGA)by building up the relationship between the memristive network(MN)and the genetic algorithm(GA),and a new edge detection algorithm where image pixels are defined as individuals of population.First,the computing model of MNGA is designed to perform mem-computing,which brings new possibility of the hardware implementation of GA.Secondly,MNGA-based edge detection integrating image filter and GA operator deployed by MN is proposed.Finally,simulation results demonstrate that the figure of merit(FoM)of our model is better than the latest memristor-based swarm intelligence.In summary,a new way is found to build proper matching of memristor to GA and aid image edge detection.
基金supported partly by the National Basic Research Program of China (2005CB724303)the National Natural Science Foundation of China (60671062) Shanghai Leading Academic Discipline Project (B112).
文摘A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.
基金Project(61673400) supported by the National Natural Science Foundation of China Project(61590923) supported by the Major Program of the National Natural Science Foundation of China+2 种基金 Project(61621062) supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China Project(61533020) supported by the State Key Program of National Natural Science of China Project(502221709) supported by the Fundamental Research Funds for the Central Universities, China
文摘The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate.
基金supported by the National Natural Science Foundation of China(6067309760702062)+3 种基金the National HighTechnology Research and Development Program of China(863 Program)(2008AA01Z1252007AA12Z136)the National ResearchFoundation for the Doctoral Program of Higher Education of China(20060701007)the Program for Cheung Kong Scholarsand Innovative Research Team in University(IRT 0645).
文摘To preserve the sharp features and details of the synthetic aperture radar (SAR) image effectively when despeckling, a despeckling algorithm with edge detection in nonsubsampled second generation bandelet transform (NSBT) domain is proposed. First, the Canny operator is utilized to detect and remove edges from the SAR image. Then the NSBT which has an optimal approximation to the edges of images and a hard thresholding rule are used to approximate the details while despeckling the edge-removed image. Finally, the removed edges are added to the reconstructed image. As the edges axe detected and protected, and the NSBT is used, the proposed algorithm reaches the state-of-the-art effect which realizes both despeckling and preserving edges and details simultaneously. Experimental results show that both the subjective visual effect and the mainly objective performance indexes of the proposed algorithm outperform that of both Bayesian wavelet shrinkage with edge detection and Bayesian least square-Gaussian scale mixture (BLS-GSM).
文摘In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detection algorithm is proposed. The local maximum modulus is extracted by linear interpolation in wavelet domain. With the analysis on histogram, the image is filtered with an adaptive dual threshold method, which effectively detects the contours of small structures as well as the boundaries of large objects. A wavelet domain's propagation function is used to further select weak edges. Experimental results have shown the self adaptivity of the threshold to images having the same kind of histogram, and the efficiency even in noise tampered images.
文摘A new edge detection method combining the scanning window central edge (SWCE) detector and an improved active contour model is proposed. The method first emploies the SWCE detector based on the difference of area pixel value means to perform an optimal edge detection, and then proposes an improved active contour model with modified energy functions to refine the location of the edges. The initial nodes of the improved active contour model are automatically found from the vectorised results of the SWCE detector. Tests on simulated speckled images and real airborne SAR images show that the combined method can benefit from the advantages of the both techniques and get satisfactory edge detection and localization abilities at the same time.