One of the methods for biometric identification is facial features detection, and eye is an important facial feature in the face. In the recent years, automatically detecting eye with different image conditions is att...One of the methods for biometric identification is facial features detection, and eye is an important facial feature in the face. In the recent years, automatically detecting eye with different image conditions is attended. This paper proposes a method which can automatically detect eye in extensive range of images with different conditions. In the proposed method, first an image is enhanced by morphological operations then region of face is detected by hybrid projection function. To identify window of eye, vertical edge dominance map is used. The authors' method uses elliptical mask on eye image to detect center of pupil. The mask scans eye image to find minimum gray level because pupil is darkest part in eye image compared with 3 well-known methods. The accuracy of 99.53% on this This method has implemented on JAFFE face database and database confirms efficiency of the proposed method.展开更多
Weakly supervised object localization mines the pixel-level location information based on image-level annotations.The traditional weakly supervised object localization approaches exploit the last convolutional feature...Weakly supervised object localization mines the pixel-level location information based on image-level annotations.The traditional weakly supervised object localization approaches exploit the last convolutional feature map to locate the discriminative regions with abundant semantics.Although it shows the localization ability of classification network,the process lacks the use of shallow edge and texture features,which cannot meet the requirement of object integrity in the localization task.Thus,we propose a novel shallow feature-driven dual-edges localization(DEL)network,in which dual kinds of shallow edges are utilized to mine entire target object regions.Specifically,we design an edge feature mining(EFM)module to extract the shallow edge details through the similarity measurement between the original class activation map and shallow features.We exploit the EFM module to extract two kinds of edges,named the edge of the shallow feature map and the edge of shallow gradients,for enhancing the edge details of the target object in the last convolutional feature map.The total process is proposed during the inference stage,which does not bring extra training costs.Extensive experiments on both the ILSVRC and CUB-200-2011 datasets show that the DEL method obtains consistency and substantial performance improvements compared with the existing methods.展开更多
Synthetic aperture radar(SAR)image is severely affected by multiplicative speckle noise,which greatly complicates the edge detection.In this paper,by incorporating the discontinuityadaptive Markov random feld(DAMRF...Synthetic aperture radar(SAR)image is severely affected by multiplicative speckle noise,which greatly complicates the edge detection.In this paper,by incorporating the discontinuityadaptive Markov random feld(DAMRF)and maximum a posteriori(MAP)estimation criterion into edge detection,a Bayesian edge detector for SAR imagery is accordingly developed.In the proposed detector,the DAMRF is used as the a priori distribution of the local mean reflectivity,and a maximum a posteriori estimation of it is thus obtained by maximizing the posteriori energy using gradient-descent method.Four normalized ratios constructed in different directions are computed,based on which two edge strength maps(ESMs)are formed.The fnal edge detection result is achieved by fusing the results of two thresholded ESMs.The experimental results with synthetic and real SAR images show that the proposed detector could effciently detect edges in SAR images,and achieve better performance than two popular detectors in terms of Pratt's fgure of merit and visual evaluation in most cases.展开更多
In this paper, a new medical image classification scheme is proposed using selforganizing map (SOM) combined with multiscale technique. It addresses the problem of the handling of edge pixels in the traditional multis...In this paper, a new medical image classification scheme is proposed using selforganizing map (SOM) combined with multiscale technique. It addresses the problem of the handling of edge pixels in the traditional multiscale SOM classifiers. First, to solve the difficulty in manual selection of edge pixels, a multiscale edge detection algorithm based on wavelet transform is proposed. Edge pixels detected are then selected into the training set as a new class and a mu1tiscale SoM classifier is trained using this training set. In this new scheme, the SoM classifier can perform both the classification on the entire image and the edge detection simultaneously. On the other hand, the misclassification of the traditional multiscale SoM classifier in regions near edges is greatly reduced and the correct classification is improved at the same time.展开更多
文摘One of the methods for biometric identification is facial features detection, and eye is an important facial feature in the face. In the recent years, automatically detecting eye with different image conditions is attended. This paper proposes a method which can automatically detect eye in extensive range of images with different conditions. In the proposed method, first an image is enhanced by morphological operations then region of face is detected by hybrid projection function. To identify window of eye, vertical edge dominance map is used. The authors' method uses elliptical mask on eye image to detect center of pupil. The mask scans eye image to find minimum gray level because pupil is darkest part in eye image compared with 3 well-known methods. The accuracy of 99.53% on this This method has implemented on JAFFE face database and database confirms efficiency of the proposed method.
基金This work was partly supported by National Natural Science Foundation of China(No.62072394)Natural Science Foundation of Hebei Province,China(No.F2021203019)Hebei Key Laboratory Project,China(No.202250701010046).
文摘Weakly supervised object localization mines the pixel-level location information based on image-level annotations.The traditional weakly supervised object localization approaches exploit the last convolutional feature map to locate the discriminative regions with abundant semantics.Although it shows the localization ability of classification network,the process lacks the use of shallow edge and texture features,which cannot meet the requirement of object integrity in the localization task.Thus,we propose a novel shallow feature-driven dual-edges localization(DEL)network,in which dual kinds of shallow edges are utilized to mine entire target object regions.Specifically,we design an edge feature mining(EFM)module to extract the shallow edge details through the similarity measurement between the original class activation map and shallow features.We exploit the EFM module to extract two kinds of edges,named the edge of the shallow feature map and the edge of shallow gradients,for enhancing the edge details of the target object in the last convolutional feature map.The total process is proposed during the inference stage,which does not bring extra training costs.Extensive experiments on both the ILSVRC and CUB-200-2011 datasets show that the DEL method obtains consistency and substantial performance improvements compared with the existing methods.
基金supported National Natural Science Foundation of China (No.61102167)
文摘Synthetic aperture radar(SAR)image is severely affected by multiplicative speckle noise,which greatly complicates the edge detection.In this paper,by incorporating the discontinuityadaptive Markov random feld(DAMRF)and maximum a posteriori(MAP)estimation criterion into edge detection,a Bayesian edge detector for SAR imagery is accordingly developed.In the proposed detector,the DAMRF is used as the a priori distribution of the local mean reflectivity,and a maximum a posteriori estimation of it is thus obtained by maximizing the posteriori energy using gradient-descent method.Four normalized ratios constructed in different directions are computed,based on which two edge strength maps(ESMs)are formed.The fnal edge detection result is achieved by fusing the results of two thresholded ESMs.The experimental results with synthetic and real SAR images show that the proposed detector could effciently detect edges in SAR images,and achieve better performance than two popular detectors in terms of Pratt's fgure of merit and visual evaluation in most cases.
文摘In this paper, a new medical image classification scheme is proposed using selforganizing map (SOM) combined with multiscale technique. It addresses the problem of the handling of edge pixels in the traditional multiscale SOM classifiers. First, to solve the difficulty in manual selection of edge pixels, a multiscale edge detection algorithm based on wavelet transform is proposed. Edge pixels detected are then selected into the training set as a new class and a mu1tiscale SoM classifier is trained using this training set. In this new scheme, the SoM classifier can perform both the classification on the entire image and the edge detection simultaneously. On the other hand, the misclassification of the traditional multiscale SoM classifier in regions near edges is greatly reduced and the correct classification is improved at the same time.