The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based...The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate.展开更多
Super-resolution (SR) is a widely used tech- nology that increases image resolution using algorithmic methods. However, preserving the local edge structure and visual quality in infrared (IR) SR images is challeng...Super-resolution (SR) is a widely used tech- nology that increases image resolution using algorithmic methods. However, preserving the local edge structure and visual quality in infrared (IR) SR images is challenging because of their disadvantages, such as lack of detail, poor contrast, and blurry edges. Traditional and advanced methods maintain the quantitative measures, but they mostly fail to preserve edge and visual quality. This paper proposes an algorithm based on high frequency layer features. This algorithm focuses on the IR image edge texture in the reconstruction process. Experimental results show that the mean gradient of the IR image reconstructed by the proposed algorithm increased by 1.5, 1.4, and 1.2 times than that of the traditional algorithm based on L1- norm, L2-norm, and traditional mixed norm, respectively. The peak signal-to-noise ratio, structural similarity index, and visual effect of the reconstructed image also improved.展开更多
基金Project(61673400) supported by the National Natural Science Foundation of China Project(61590923) supported by the Major Program of the National Natural Science Foundation of China+2 种基金 Project(61621062) supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China Project(61533020) supported by the State Key Program of National Natural Science of China Project(502221709) supported by the Fundamental Research Funds for the Central Universities, China
文摘The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 61275099 and 6 1671094) and the Natural Science foundation of Chongqing Science and Technology Commission (No, CSTC2015JCYJA40032).
文摘Super-resolution (SR) is a widely used tech- nology that increases image resolution using algorithmic methods. However, preserving the local edge structure and visual quality in infrared (IR) SR images is challenging because of their disadvantages, such as lack of detail, poor contrast, and blurry edges. Traditional and advanced methods maintain the quantitative measures, but they mostly fail to preserve edge and visual quality. This paper proposes an algorithm based on high frequency layer features. This algorithm focuses on the IR image edge texture in the reconstruction process. Experimental results show that the mean gradient of the IR image reconstructed by the proposed algorithm increased by 1.5, 1.4, and 1.2 times than that of the traditional algorithm based on L1- norm, L2-norm, and traditional mixed norm, respectively. The peak signal-to-noise ratio, structural similarity index, and visual effect of the reconstructed image also improved.