Global demand for vegetable oil is anticipated to double by 2030. The current vegetable oil production platforms, including oil palm and temperate oilseeds, are unlikely to produce such an expansion. Therefore, the ex...Global demand for vegetable oil is anticipated to double by 2030. The current vegetable oil production platforms, including oil palm and temperate oilseeds, are unlikely to produce such an expansion. Therefore, the exploration of novel vegetable oil sources has become increasingly important in order to make up this future vegetable oil shortfall. Triacylglycerol (TAG), as the dominant form of vegetable oil, has recently attracted immense interest in terms of being produced in plant vegetative tissues via genetic engineering technologies. Multidiscipline-based "-omics" studies are increasingly enhancing our understanding of plant lipid biochemistry and metabolism. As a result, the identification of biochemical pathways and the annotation of key genes contributing to fatty acid biosynthesis and to lipid assembly and turnover have been effectively updated. In recent years, there has been a rapid development in the genetic enhancement of TAG accumulation in high-biomass plant vegetative tissues and oilseeds through the genetic manipulation of the key genes and regulators involved in TAG biosynthesis. In this review, current genetic engineering strategies ranging from single-gene manipulation to multigene stacking aimed at increasing plant biomass TAG accumulation are summarized. New directions and suggestions for plant oil production that may help to further alleviate the potential shortage of edible oil and biodiesel are discussed.展开更多
A rapid DES-Fe3O4 microextraction coupled with liquid chromatography method was ingeniously developed for simultaneous control of five typical plant growth regulators in a planting cycle including indole-3-acetic acid...A rapid DES-Fe3O4 microextraction coupled with liquid chromatography method was ingeniously developed for simultaneous control of five typical plant growth regulators in a planting cycle including indole-3-acetic acid, abscisic acid, thidiazuron, 1-naphthylacetic acid and forchlorfenuron. The experiments were carried out with one type of carboxylic acid-assisted deep eutectic solvent (nChCl:nacetic acid=1:3) as extractant, coupled with ultrasonic wave extraction for 30 min at bath temperature at 50 ℃. Under the optimum conditions, good extraction performances of linearities for five plant growth regulators were achieved separately in the range of 0.10–50 mg/L of indole-3-acetic acid, 0.06–50 mg/L of abscisic acid, 0.20–50 mg/L of thidiazuron, 0.50–50 mg/L of 1-naphthylacetic acid and 0.06–50 mg/L of forchlorfenuron and recoveries were ranged from 70.4%to 102.2%. Meanwhile, Fe3O4 was preferentially combined with DES in the oil matrix, the advantage of which was pointed to rapid and efficient separation of targeted plant growth regulators from complicated oil matrix. The proposed approach achieved satisfied results and met the monitoring requirements of plant growth regulators control in edible vegetable oil samples.展开更多
基金the China Scholarship Council (CSC) for financial support
文摘Global demand for vegetable oil is anticipated to double by 2030. The current vegetable oil production platforms, including oil palm and temperate oilseeds, are unlikely to produce such an expansion. Therefore, the exploration of novel vegetable oil sources has become increasingly important in order to make up this future vegetable oil shortfall. Triacylglycerol (TAG), as the dominant form of vegetable oil, has recently attracted immense interest in terms of being produced in plant vegetative tissues via genetic engineering technologies. Multidiscipline-based "-omics" studies are increasingly enhancing our understanding of plant lipid biochemistry and metabolism. As a result, the identification of biochemical pathways and the annotation of key genes contributing to fatty acid biosynthesis and to lipid assembly and turnover have been effectively updated. In recent years, there has been a rapid development in the genetic enhancement of TAG accumulation in high-biomass plant vegetative tissues and oilseeds through the genetic manipulation of the key genes and regulators involved in TAG biosynthesis. In this review, current genetic engineering strategies ranging from single-gene manipulation to multigene stacking aimed at increasing plant biomass TAG accumulation are summarized. New directions and suggestions for plant oil production that may help to further alleviate the potential shortage of edible oil and biodiesel are discussed.
基金the Research Project of Technology Program of Jiangxi Province (No. 20141BBG70093)State Key Laboratory of Food Science and Technology, Nanchang University(Nos. SKLFZZB-201718,SKLF-ZZA-201612)+1 种基金the National Natural Science Foundation of China (No. 21563020)China Scholarship Council for financial support
文摘A rapid DES-Fe3O4 microextraction coupled with liquid chromatography method was ingeniously developed for simultaneous control of five typical plant growth regulators in a planting cycle including indole-3-acetic acid, abscisic acid, thidiazuron, 1-naphthylacetic acid and forchlorfenuron. The experiments were carried out with one type of carboxylic acid-assisted deep eutectic solvent (nChCl:nacetic acid=1:3) as extractant, coupled with ultrasonic wave extraction for 30 min at bath temperature at 50 ℃. Under the optimum conditions, good extraction performances of linearities for five plant growth regulators were achieved separately in the range of 0.10–50 mg/L of indole-3-acetic acid, 0.06–50 mg/L of abscisic acid, 0.20–50 mg/L of thidiazuron, 0.50–50 mg/L of 1-naphthylacetic acid and 0.06–50 mg/L of forchlorfenuron and recoveries were ranged from 70.4%to 102.2%. Meanwhile, Fe3O4 was preferentially combined with DES in the oil matrix, the advantage of which was pointed to rapid and efficient separation of targeted plant growth regulators from complicated oil matrix. The proposed approach achieved satisfied results and met the monitoring requirements of plant growth regulators control in edible vegetable oil samples.