期刊文献+
共找到16,549篇文章
< 1 2 250 >
每页显示 20 50 100
Development and Therapeutic Applications of Precise Gene Editing Technology
1
作者 ZHANG Yi-Meng YANG Xiao +1 位作者 WANG Jian LI Zhen-Hua 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第10期2637-2647,共11页
The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which invo... The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes. 展开更多
关键词 precise gene editing CRISPR/Cas system base editing prime editing gene therapy
下载PDF
Germline Gene-Editing Creates Enhanced Livestock-Technical and Especially Ethical Issues Challenge Its Use in Humans
2
作者 Jennifer Welsh 《Engineering》 SCIE EI CAS CSCD 2024年第2期3-5,共3页
Using clustered regularly interspaced short palindromic repeats(CRISPR)-based molecular tools,scientists are engineering-as they are also doing with plants.-animals with advantageous traits,like disease resistance and... Using clustered regularly interspaced short palindromic repeats(CRISPR)-based molecular tools,scientists are engineering-as they are also doing with plants.-animals with advantageous traits,like disease resistance and improved food yield.While these innovative techniques could one day be applied in humans,technical hurdles and ethical concerns likely place this possibility far in the future,The enhancements rely on germline gene editing,which alters the genes in a way that passes the changes on to offspring.Ger m-line gene editing differs from the somatic cell gene editing used in the highly promising new treatment recently approved for the human disease sickle cell anemia. 展开更多
关键词 LIKELY CREATE editing
下载PDF
A simple and efficient CRISPR/Cas9 system permits ultra-multiplex genome editing in plants
3
作者 Suting Wu Htin Kyaw +11 位作者 Zhijun Tong Yirong Yang Zhiwei Wang Liying Zhang Lihua Deng Zhiguo Zhang Bingguang Xiao William Paul Quick Tiegang Lu Guoying Xiao Guannan Qin Xue'an Cui 《The Crop Journal》 SCIE CSCD 2024年第2期569-582,共14页
The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of t... The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering. 展开更多
关键词 CRISPR/Cas9 Multiplex genome editing Assembly system PLANT
下载PDF
Engineering high amylose and resistant starch in maize by CRISPR/Cas9-mediated editing of starch branching enzymes
4
作者 Mingzheng Ma Shanqiu Sun +5 位作者 Jinjie Zhu Xiantao Qi Gaoke Li Jianguang Hu Chuanxiao Xie Changlin Liu 《The Crop Journal》 SCIE CSCD 2024年第4期1252-1258,共7页
To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).... To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines. 展开更多
关键词 MAIZE Gene editing Starch branching enzyme I Starch branching enzyme IIb
下载PDF
Metabolic engineering and genome editing strategies for enhanced lipid production in microalgae
5
作者 ANJANI DEVI CHINTAGUNTA SAMUDRALA PRASHANT JEEVAN KUMAR NUNE SATYA SAMPATH KUMAR 《BIOCELL》 SCIE 2024年第8期1181-1195,共15页
Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enh... Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enhanced lipid production,leading towards biodiesel production.These microalgae have short life cycles,require less labor,and space,and are easy to scale up.Triacylglycerol,the primary source of lipids needed to produce biodiesel,is accumulated by most microalgae.The article focuses on different types of oleaginous microalgae,which can be used as a feedstock to produce biodiesel.Lipid biosynthesis in microalgae occurs through fatty acid synthesis and TAG synthesis approaches.In-depth discussions are held regarding other efficient methods for enhancing fatty acid and TAG synthesis,regulating TAG biosynthesis bypass methods,blocking competing pathways,multigene approach,and genome editing.The most potential targets for gene transformation are hypothesized to be a malic enzyme and diacylglycerol acyltransferase while lowering phosphoenolpyruvate carboxylase activity is reported to be advantageous for lipid synthesis. 展开更多
关键词 Oleaginous microalgae BIODIESEL TAG synthesis Metabolic engineering Genome editing
下载PDF
Genome-wide identification of RNA editing in seven porcine tissues by matched DNA and RNA high-throughput sequencing 被引量:6
6
作者 Yuebo Zhang Longchao Zhang +8 位作者 Jingwei Yue Xia Wei Ligang Wang Xin Liu Hongmei Gao Xinhua Hou Fuping Zhao Hua Yan Lixian Wang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2019年第2期339-352,共14页
Background: RNA editing is a co/posttranscriptional modification mechanism that increases the diversity of transcripts, with potential functional consequences. The advent of next-generation sequencing technologies has... Background: RNA editing is a co/posttranscriptional modification mechanism that increases the diversity of transcripts, with potential functional consequences. The advent of next-generation sequencing technologies has enabled the identification of RNA edits at unprecedented throughput and resolution. However, our knowledge of RNA editing in swine is still limited.Results: Here, we utilized RES-Scanner to identify RNA editing sites in the brain, subcutaneous fat, heart, liver,muscle, lung and ovary in three 180-day-old Large White gilts based on matched strand-specific RNA sequencing and whole-genome resequencing datasets. In total, we identified 74863 editing sites, and 92.1% of these sites caused adenosine-to-guanosine(A-to-G) conversion. Most A-to-G sites were located in noncoding regions and generally had low editing levels. In total, 151 A-to-G sites were detected in coding regions(CDS), including 94 sites that could lead to nonsynonymous amino acid changes. We provide further evidence supporting a previous observation that pig transcriptomes are highly editable at PRE-1 elements. The number of A-to-G editing sites ranged from 4155(muscle) to 25001(brain) across the seven tissues. The expression levels of the ADAR enzymes could explain some but not all of this variation across tissues. The functional analysis of the genes with tissuespecific editing sites in each tissue revealed that RNA editing might play important roles in tissue function.Specifically, more pathways showed significant enrichment in the fat and liver than in other tissues, while no pathway was enriched in the muscle.Conclusions: This study identified a total of 74863 nonredundant RNA editing sites in seven tissues and revealed the potential importance of RNA editing in tissue function. Our findings largely extend the porcine editome and enhance our understanding of RNA editing in swine. 展开更多
关键词 ADAR A-to-G High-throughput sequencing RNA editing SWINE
下载PDF
Wheat genome editing expedited by efficient transformation techniques:Progress and perspectives 被引量:6
7
作者 Ke Wang Bisma Riaz Xingguo Ye 《The Crop Journal》 SCIE CAS CSCD 2018年第1期22-31,共10页
Genome editing is one of the most promising biotechnologies to improve crop performance.Common wheat is a staple food for mankind. In the past few decades both basic and applied research on common wheat has lagged beh... Genome editing is one of the most promising biotechnologies to improve crop performance.Common wheat is a staple food for mankind. In the past few decades both basic and applied research on common wheat has lagged behind other crop species due to its complex,polyploid genome and difficulties in genetic transformation. Recent breakthroughs in wheat transformation permit a revolution in wheat biotechnology. In this review, we summarize recent progress in wheat genetic transformation and its potential for wheat improvement. We then review recent progress in plant genome editing, which is now readily available in wheat. We also discuss measures to further increase transformation efficiency and potential applications of genome editing in wheat. We propose that, together with a high quality reference genome, the time for efficient genetic engineering and functionality studies in common wheat has arrived. 展开更多
关键词 TRITICUM AESTIVUM GENOME editing CRISPR/Cas9 Genetic TRANSFORMATION
下载PDF
Primordial germ cell-mediated transgenesis and genome editing in birds 被引量:2
8
作者 Jae Yong Han Young Hyun Park 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2018年第2期257-267,共11页
Transgenesis and genome editing in birds are based on a unique germline transmission system using primordial germ cells(PGCs), which is quite different from the mammalian transgenic and genome editing system. PGCs are... Transgenesis and genome editing in birds are based on a unique germline transmission system using primordial germ cells(PGCs), which is quite different from the mammalian transgenic and genome editing system. PGCs are progenitor cells of gametes that can deliver genetic information to the next generation. Since avian PGCs were first discovered in nineteenth century, there have been numerous efforts to reveal their origin, specification, and unique migration pattern, and to improve germline transmission efficiency. Recent advances in the isolation and in vitro culture of avian PGCs with genetic manipulation and genome editing tools enable the development of valuable avian models that were unavailable before. However, many challenges remain in the production of transgenic and genome-edited birds,including the precise control of germline transmission, introduction of exogenous genes, and genome editing in PGCs.Therefore, establishing reliable germline-competent PGCs and applying precise genome editing systems are critical current issues in the production of avian models. Here, we introduce a historical overview of avian PGCs and their application, including improved techniques and methodologies in the production of transgenic and genome-edited birds, and we discuss the future potential applications of transgenic and genome-edited birds to provide opportunities and benefits for humans. 展开更多
关键词 AVIAN GENOME editing Primordial GERM cell TRANSGENESIS
下载PDF
A Review and Prospects on Collaborative Ontology Editing Tools 被引量:3
9
作者 XIAN Guo-jian ZHAO Rui-xue 《Journal of Integrative Agriculture》 SCIE CSCD 2012年第5期731-740,共10页
Building ontology is a fundamental but also hard work. Collaborative ontology editing tools can make ontology development more efficiently. In this paper, the important features of collaborative ontology development w... Building ontology is a fundamental but also hard work. Collaborative ontology editing tools can make ontology development more efficiently. In this paper, the important features of collaborative ontology development were analyzed, and several tools such as AGROVOC Concept Server Workbench (ACSW), Collaborative Prot6g6 and WebProt6g6 were studied. Besides, some comparisons among them from several aspects were made and some prospects for the further improvement of these tools were given. Finally, we show it is a good way to build agricultural ontology with these tools collaboratively and simultaneously. 展开更多
关键词 collaborative ontology editing agricultural ontology ACSW Collaborative Prot6g6 WebProt6g6
下载PDF
A new gain-of-function OsGS2/GRF4 allele generated by CRISPR/Cas9 genome editing increases rice grain size and yield 被引量:7
10
作者 Wenshu Wang Weipeng Wang +11 位作者 Yanlin Pan Chao Tan Hongjing Li Ya Chen Xingdan Liu Jing Wei Nian Xu Yu Han Han Gu Rongjian Ye Qi Ding Chonglie Ma 《The Crop Journal》 SCIE CSCD 2022年第4期1207-1212,共6页
Grain size is one of the most important factors affecting rice grain quality and yield,and attracts great attention from molecular biologists and breeders.In this study,we engineered a CRISPR/Cas9 system targeting the... Grain size is one of the most important factors affecting rice grain quality and yield,and attracts great attention from molecular biologists and breeders.In this study,we engineered a CRISPR/Cas9 system targeting the miR396 recognition site of the rice GS2 gene,which encodes growth-regulating factor 4(OsGRF4)and regulates multiple agronomic traits including grain size,grain quality,nitrogen use efficiency,abiotic stress response,and seed shattering.In contrast to most previous genome editing efforts in which indel mutations were chosen to obtain null mutants,a mutant named GS2^(E) carrying an in-frame 6-bp deletion and 1-bp substitution within the miR396-targeted sequence was identified.GS2^(E) plants showed increased expression of GS2 in consistent with impaired repression by miR396.As expected,the gain-of-function GS2^(E) mutant exhibited multiple beneficial traits including increased grain size and yield and bigger grain length/width ratio.Thousand grain weight and grain yield per plant of GS2^(E) plants were increased by 23.5%and 10.4%,respectively.These improved traits were passed to hybrids in a semidominant way,suggesting that the new GS2^(E) allele has great potential in rice improvement.Taken together,we report new GS2 germplasm and describe a novel gene-editing strategy that can be widely employed to improve grain size and yield in rice.This trait-improvement strategy could be applied to other genes containing miRNA target sites,in particular the conserved miR396-GRF/GIF module that governs plant growth,development and environmental response. 展开更多
关键词 Genome editing GS2/GRF4 Grain size YIELD RICE
下载PDF
Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research 被引量:1
11
作者 Zhen-Hua Li Jun Wang +2 位作者 Jing-Ping Xu Jian Wang Xiao Yang 《Military Medical Research》 SCIE CAS CSCD 2023年第6期862-880,共19页
The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-bas... The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein(Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases(CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed. 展开更多
关键词 Genome editing CRISPR-Cas system Base editing Prime editing Transposon-associated genome editing Cardiovascular disease Heart Blood vessel Gene therapy
下载PDF
Base editing in plants: Current status and challenges 被引量:10
12
作者 Sutar Suhas Bharat Shaoya Li +2 位作者 Jingying Li Lei Yan Lanqin Xia 《The Crop Journal》 SCIE CAS CSCD 2020年第3期384-395,共12页
Genome editing technologies have revolutionized the field of plant science by enabling targeted modification of plant genomes and are emerging as powerful tools for both plant gene functional analyses and crop improve... Genome editing technologies have revolutionized the field of plant science by enabling targeted modification of plant genomes and are emerging as powerful tools for both plant gene functional analyses and crop improvement. Although homology-directed repair(HDR)is a feasible approach to achieve precise gene replacement and base substitution in some plant species, the dominance of the non-homologous end joining pathway and low efficiency of HDR in plant cells have limited its application. Base editing has emerged as an alternative tool to HDR-mediated replacement, facilitating precise editing of plant genome by converting one single base to another in a programmable manner without a doublestranded break and a donor repair template. In this review, we summarize the latest developments in base-editing technologies as well as their underlying mechanisms. We review current applications of these technologies in plant species. Finally, we address the challenges and future perspectives of this emerging technology in plants. 展开更多
关键词 Base editing in plants Current status and challenges
下载PDF
Agrobacterium tumefaciens-mediated transformation of embryogenic callus and CRISPR/Cas9-mediated genome editing in‘Feizixiao'litchi 被引量:8
13
作者 Shujun Wang Guo Wang +2 位作者 Huanling Li Fang Li Jiabao Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第5期947-957,共11页
Litchi(Litchi chinensis Sonn.)is a type of commercially prevalent subtropical and tropical fruit.Since litchi has a highly heterozygous genetic background and a long reproductive cycle,conventional breeding methods(su... Litchi(Litchi chinensis Sonn.)is a type of commercially prevalent subtropical and tropical fruit.Since litchi has a highly heterozygous genetic background and a long reproductive cycle,conventional breeding methods(such as hybridization)have limited ability to nurture new litchi cultivars.Here,an efficient and stable Agrobacterium tumefaciens-mediated genetic transformation of embryogenic callus was established in‘Feizixiao’litchi.Transgenic materials were verified using polymerase chain reaction(PCR)analysis,β-glucuronidase(GUS)assay,and green fluorescent protein(GFP)assay.To implement the technology of the Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)/associated protein 9(CRISPR/Cas9)technology in‘Feizixiao’litchi and verify the validity of these transformation systems,the litchi polyphenol oxidase gene(LcPPO,JF926153)was knocked out.Various categories of mutations,covering base insertions,deletions,and substitutions,were found in transgenic materials via sequence analysis.The transformation system achieved high feasibility and efficiency,and the system of CRISPR/Cas9 was successfully employed to edit genes in‘Feizixiao’litchi.This work provides an essential foundation for investigating the functions of genes and accelerating litchi genetic improvement. 展开更多
关键词 LITCHI Litchi chinensis Sonn Genetic transformation Gene editing Polyphenol oxidase(PPO)
下载PDF
Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice 被引量:3
14
作者 Ruiying Qin Shengxiang Liao +4 位作者 Juan Li Hao Li Xiaoshuang Liu Jianbo Yang Pengcheng Wei 《The Crop Journal》 SCIE CAS CSCD 2020年第3期396-402,共7页
The efficiency of plant cytidine base-editing systems is limited, and unwanted mutations frequently occur in transgenic plants. We increased the cytidine editing frequency and fidelity of the plant base editor 3(BE3) ... The efficiency of plant cytidine base-editing systems is limited, and unwanted mutations frequently occur in transgenic plants. We increased the cytidine editing frequency and fidelity of the plant base editor 3(BE3) and targeted activation-induced cytidine deaminase(CDA)(target-AID) systems by coexpressing three copies of free uracil–DNA glycosylase(UDG) inhibitor(UGI). The editing efficiency of the improved BE3 and CDA systems reached as high as 88.9% and 85.7%, respectively, in regenerated rice plants, with a very low frequency of unwanted mutations. The low editing frequency of the BE3 system in the GC context could be overcome by the modified CDA system. These results provide a highfidelity and high-efficiency solution for rice genomic base editing. 展开更多
关键词 CRISPR-Cas9 Base editing BE3 CDA Oryza sativa
下载PDF
Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? 被引量:2
15
作者 Emma N.Shipman Jingwei Yu +2 位作者 Jiaqi Zhou Karin Albornoz Diane M.Beckles 《Horticulture Research》 SCIE 2021年第1期51-71,共21页
Postharvest waste and loss of horticultural crops exacerbates the agricultural problems facing humankind and will continue to do so in the next decade.Fruits and vegetables provide us with a vast spectrum of healthful... Postharvest waste and loss of horticultural crops exacerbates the agricultural problems facing humankind and will continue to do so in the next decade.Fruits and vegetables provide us with a vast spectrum of healthful nutrients,and along with ornamentals,enrich our lives with a wide array of pleasant sensory experiences.These commodities are,however,highly perishable.Approximately 33%of the produce that is harvested is never consumed since these products naturally have a short shelf-life,which leads to postharvest loss and waste.This loss,however,could be reduced by breeding new crops that retain desirable traits and accrue less damage over the course of long supply chains.New gene-editing tools promise the rapid and inexpensive production of new varieties of crops with enhanced traits more easily than was previously possible.Our aim in this review is to critically evaluate gene editing as a tool to modify the biological pathways that determine fruit,vegetable,and ornamental quality,especially after storage.We provide brief and accessible overviews of both the CRISPR-Cas9 method and the produce supply chain.Next,we survey the literature of the last 30 years,to catalog genes that control or regulate quality or senescence traits that are"ripe"for gene editing.Finally,we discuss barriers to implementing gene editing for postharvest,from the limitations of experimental methods to international policy.We conclude that in spite of the hurdles that remain,gene editing of produce and ornamentals will likely have a measurable impact on reducing postharvest loss and waste in the next 5-10 years. 展开更多
关键词 CROPS editing HARVEST
下载PDF
The CRIPSR/Cas gene-editing system——an immature but useful toolkit for experimental and clinical medicine 被引量:1
16
作者 Yuyan Yang Yue Huang 《Animal Models and Experimental Medicine》 CSCD 2019年第1期5-8,共4页
A Chinese scientist, Jiankui He, and his creation of the world ' s first genetically altered baby made headlines recently. As a newly developed gene-editing technique, the CRISPR/Cas system should not be applied t... A Chinese scientist, Jiankui He, and his creation of the world ' s first genetically altered baby made headlines recently. As a newly developed gene-editing technique, the CRISPR/Cas system should not be applied to human beings for reproductive purposes until it has been extensively tested. However, numerous experimental research studies in human somatic, germline cells, and even in embryos, have been conducted, which have shown CRISPR/Cas to be a useful tool for human genome editing and a potential therapeutic method for future clinical use. 展开更多
关键词 CRISPR-Cas GENE editing GENE therapy human embryos RECOMBINANT DNA
下载PDF
Genome editing technology and application in soybean improvement 被引量:7
17
作者 Aili Bao Chanjuan Zhang +3 位作者 Yi Huang Haifeng Chen Xinan Zhou Dong Cao 《Oil Crop Science》 2020年第1期31-40,共10页
Soybean(Glycine max)is a legume crop with great economic value that provides rich protein and oil for human food and animal feed.In order to cope with the ever-increasing need for soybean products and the changing env... Soybean(Glycine max)is a legume crop with great economic value that provides rich protein and oil for human food and animal feed.In order to cope with the ever-increasing need for soybean products and the changing environment,soybean genetic improvement needs to be accelerated.In recent years,the rapid developed genome editing technologies,such as zinc finger nuclease(ZFNs),transcription activator-like effector nucleases(TALENs),and clustered regularly interspaced short palindromic repeats/CRISPR associated protein(CRISPR/Cas),have shown broad application prospects in gene function research and improvement of important agronomic traits in many crops,and has also brought opportunities for soybean breeding.Here we systematically reviewed recent advances in genome editing technology.We also summarized the significances,current applications,challenges and future perspectives in soybean genome editing,which could provide references for exerting the feature and advantage of this technology to better soybean improvement. 展开更多
关键词 Genome editing SOYBEAN ZFNs TALENs CRISPR/Cas9 CRISPR/Cas12a Base editing
下载PDF
Lipid nanoparticle-mediated CRISPR/Cas9 gene editing and metabolic engineering for anticancer immunotherapy 被引量:3
18
作者 Hyemin Ju Dongyoon Kim Yu-Kyoung Oh 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2022年第5期641-652,共12页
Metabolic engineering of the tumor microenvironment has emerged as a new strategy.Lactate dehydrogenase A(LDHA)is a prominent target for metabolic engineering.Here,we designed a cationic lipid nanoparticle formulation... Metabolic engineering of the tumor microenvironment has emerged as a new strategy.Lactate dehydrogenase A(LDHA)is a prominent target for metabolic engineering.Here,we designed a cationic lipid nanoparticle formulation for LDHA gene editing.The plasmid DNA delivery efficiency of our lipid nanoparticle formulations was screened by testing the fluorescence of lipid nanoparticles complexed to plasmid DNA encoding green fluorescence protein(GFP).The delivery efficiency was affected by the ratios of three components:a cationic lipid,cholesterol or its derivative,and a fusogenic lipid.The lipid nanoparticle designated formulation F3 was complexed to plasmid DNA co-encoding CRISPR-associated protein 9 and LDHA-specific sgRNA,yielding the lipoplex,pCas9-sgLDHA/F3.The lipoplex including GFP-encoding plasmid DNA provided gene editing in HeLa-GFP cells.Treatment of B16F10 tumor cells with pCas9-sgLDHA/F3 yielded editing of the LDHA gene and increased the pH of the culture medium.pCas9-sgLDHA/F3 treatment activated the interferon-gamma and granzyme production of T cells in culture.In vivo,combining pCas9-sgLDHA/F3 with immune checkpoint-inhibiting anti-PD-L1 antibody provided a synergistic antitumor effect and prolonged the survival of tumor model mice.This study suggests that combining metabolic engineering of the tumor microenvironment with immune checkpoint inhibition could be a valuable antitumor strategy. 展开更多
关键词 Gene editing Lipid nanoparticle Metabolic engineering Lactate dehydrogenase A Tumor microenvironment
下载PDF
Developmental stage-specific A-to-I editing pattern in the postnatal pineal gland of pigs(Sus scrofa) 被引量:2
19
作者 Rong Zhou Wenye Yao +6 位作者 Chundi Xie Leixia Zhang Yangli Pei Hua Li Zheng Feng Yalan Yang Kui Li 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2021年第1期198-206,共9页
Background: RNA editing is a widespread post-transcriptional modification mechanism in mammalian genomes.Although many editing sites have been identified in domestic pigs(Sus scrofa), little is known about the charact... Background: RNA editing is a widespread post-transcriptional modification mechanism in mammalian genomes.Although many editing sites have been identified in domestic pigs(Sus scrofa), little is known about the characteristics and dynamic regulation of RNA editing in the pineal gland(PG), a small neuroendocrine gland that synthesizes and secretes melatonin, which is primarily responsible to modulate sleep patterns.Results: This study analyzed the expression of adenosine-to-inosine(A-to-I) editing regulators and profiled the first dynamic A-to-I RNA editome during postnatal PG development. The results identified ADAR1 as the most abundantly expressed ADAR enzyme, which was down-regulated during postnatal PG development. Furthermore,47,284 high-confidence RNA editing sites were identified, the majority of which(93.6%) were of the canonical A-to-I editing type, followed by C-to-T editing. Analysis of its characteristics showed that the A-to-I editing sites mostly localized in SINE retrotransposons PRE-1/Pre0_SS. Moreover, a strong deficiency and preference for guanine nucleotides at positions of one base upstream or downstream were found, respectively. The overall editing level at the puberty stage was higher than at both infancy and adulthood stages. Additionally, genome-wide RNA editing was found to exhibit a dynamic stage-specific fashion(postnatally). Genes that underwent developmental changes in RNA editing were associated with catabolic processes as well as protein localization and transport functions,implying that RNA editing might be responsible for the molecular machineries of the postnatal developing PG.Remarkably, RNA editing in 3′-UTRs might regulate gene expression by influencing miRNA binding during PG development.Conclusions: This study profiles the first comprehensive developmental RNA editome in the pig PG, which contributes to the understanding of the importance of post-transcriptionally mediated regulation during mammalian postnatal PG development. Moreover, this study widely extends RNA editome resources in mammals. 展开更多
关键词 A-to-I Pig Pineal gland Postnatal development RNA editing
下载PDF
An efficient transient gene expression system for protein subcellular localization assay and genome editing in citrus protoplasts 被引量:2
20
作者 Wenhui Yang Jiaqin Ren +6 位作者 Wanrong Liu Dan Liu Kaidong Xie Fei Zhang Pengwei Wang Wenwu Guo Xiaomeng Wu 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第3期425-436,共12页
Protoplast has been widely used in biotechnologies to circumvent the breeding obstacles in citrus, including long juvenility, polyembryony, and male/female sterility. The protoplast-based transient gene expression sys... Protoplast has been widely used in biotechnologies to circumvent the breeding obstacles in citrus, including long juvenility, polyembryony, and male/female sterility. The protoplast-based transient gene expression system is a powerful tool for gene functional characterization and CRISPR/Cas9 genome editing in higher plants, but it has not been widely used in citrus. In this study, the polyethylene glycol(PEG)-mediated method was optimized for citrus callus protoplast transfection, with an improved transfection efficiency of 68.4%. Consequently, the efficiency of protein subcellular localization assay was increased to 65.8%, through transient expression of the target gene in protoplasts that stably express the fluorescent organelle marker protein. The gene editing frequencies in citrus callus protoplasts reached 14.2% after transient expression of CRISPR/Cas9 constructs. We demonstrated that the intronic polycistronic tRNAgRNA(inPTG) genome editing construct was functional in both the protoplast transient expression system and epicotyl stable transformation system in citrus. With this optimized protoplast transient expression system, we improved the efficiency of protein subcellular localization assay and developed the genome editing system in callus protoplasts, which provides an approach for prompt test of CRISPR vectors. 展开更多
关键词 CITRUS Callus protoplast Transient transfection Subcellular localization Genome editing
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部