With the development of radioactive-ion-beam facilities,many exotic phenomena have been discovered or predicted in the nuclei far from the stability line,including cluster structure,shell structure,deformed halo,and s...With the development of radioactive-ion-beam facilities,many exotic phenomena have been discovered or predicted in the nuclei far from the stability line,including cluster structure,shell structure,deformed halo,and shape decoupling effects.The study of exotic nuclear phenomena is at the frontier of nuclear physics nowadays.The covariant density functional theory(CDFT)is one of the most successful microscopic models in describing the structure of nuclei in almost the whole nuclear chart.Within the framework of CDFT,toward a proper treatment of deformation and weak binding,the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)has been developed.In this contribution,we review the applications and extensions of the DRHBc theory to the study of exotic nuclei.The DRHBc theory has been used to investigate the deformed halos in B,C,Ne,Na,and Mg isotopes and the theoretical descriptions are reasonably consistent with available data.A DRHBc Mass Table Collaboration has been founded,aiming at a high precision nuclear mass table with deformation and continuum effects included,which is underway.By implementing the angular momentum projection based on the DRHBc theory,the rotational excitations of deformed halos have been investigated and it is shown that the deformed halos and shape decoupling effects also exist in the low-lying rotational excitation states of deformed halo nuclei.展开更多
In 2007,China surpassed the USA to become the largest carbon emitter in the world.China has promised a 60%–65%reduction in carbon emissions per unit GDP by 2030,compared to the baseline of 2005.Therefore,it is import...In 2007,China surpassed the USA to become the largest carbon emitter in the world.China has promised a 60%–65%reduction in carbon emissions per unit GDP by 2030,compared to the baseline of 2005.Therefore,it is important to obtain accurate dynamic information on the spatial and temporal patterns of carbon emissions and carbon footprints to support formulating effective national carbon emission reduction policies.This study attempts to build a carbon emission panel data model that simulates carbon emissions in China from 2000–2013 using nighttime lighting data and carbon emission statistics data.By applying the Exploratory Spatial-Temporal Data Analysis(ESTDA)framework,this study conducted an analysis on the spatial patterns and dynamic spatial-temporal interactions of carbon footprints from 2001–2013.The improved Tapio decoupling model was adopted to investigate the levels of coupling or decoupling between the carbon emission load and economic growth in 336 prefecture-level units.The results show that,firstly,high accuracy was achieved by the model in simulating carbon emissions.Secondly,the total carbon footprints and carbon deficits across China increased with average annual growth rates of 4.82%and 5.72%,respectively.The overall carbon footprints and carbon deficits were larger in the North than that in the South.There were extremely significant spatial autocorrelation features in the carbon footprints of prefecture-level units.Thirdly,the relative lengths of the Local Indicators of Spatial Association(LISA)time paths were longer in the North than that in the South,and they increased from the coastal to the central and western regions.Lastly,the overall decoupling index was mainly a weak decoupling type,but the number of cities with this weak decoupling continued to decrease.The unsustainable development trend of China’s economic growth and carbon emission load will continue for some time.展开更多
To explore the rotational excitation of deformed halo nuclei,the angular momentum projection(AMP)has been implemented in the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc),in which both the mean f...To explore the rotational excitation of deformed halo nuclei,the angular momentum projection(AMP)has been implemented in the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc),in which both the mean field and collective wave functions are expanded in terms of Dirac WoodsSaxon basis.The DRHBc+AMP approach self-consistently describes the coupling between single particle bound states and the continuum not only in the ground state but also in rotational states.The rotational modes of deformed halos in ^(42,44)Mg are investigated by studying properties of rotational states such as the excitation energy,configuration,and density distribution.Our study demonstrates that the deformed halo structure persists from the ground state in the intrinsic frame to collective states.Especially,the typical behavior of shape decoupling effects in rotating deformed halo nuclei is revealed.展开更多
文摘With the development of radioactive-ion-beam facilities,many exotic phenomena have been discovered or predicted in the nuclei far from the stability line,including cluster structure,shell structure,deformed halo,and shape decoupling effects.The study of exotic nuclear phenomena is at the frontier of nuclear physics nowadays.The covariant density functional theory(CDFT)is one of the most successful microscopic models in describing the structure of nuclei in almost the whole nuclear chart.Within the framework of CDFT,toward a proper treatment of deformation and weak binding,the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)has been developed.In this contribution,we review the applications and extensions of the DRHBc theory to the study of exotic nuclei.The DRHBc theory has been used to investigate the deformed halos in B,C,Ne,Na,and Mg isotopes and the theoretical descriptions are reasonably consistent with available data.A DRHBc Mass Table Collaboration has been founded,aiming at a high precision nuclear mass table with deformation and continuum effects included,which is underway.By implementing the angular momentum projection based on the DRHBc theory,the rotational excitations of deformed halos have been investigated and it is shown that the deformed halos and shape decoupling effects also exist in the low-lying rotational excitation states of deformed halo nuclei.
基金National Natural Science Foundation of China Youth Science Foundation ProjectNo.41701170+1 种基金National Natural Science Foundation of China,No.41661025,No.42071216Fundamental Research Funds for the Central Universities,No.18LZUJBWZY068。
文摘In 2007,China surpassed the USA to become the largest carbon emitter in the world.China has promised a 60%–65%reduction in carbon emissions per unit GDP by 2030,compared to the baseline of 2005.Therefore,it is important to obtain accurate dynamic information on the spatial and temporal patterns of carbon emissions and carbon footprints to support formulating effective national carbon emission reduction policies.This study attempts to build a carbon emission panel data model that simulates carbon emissions in China from 2000–2013 using nighttime lighting data and carbon emission statistics data.By applying the Exploratory Spatial-Temporal Data Analysis(ESTDA)framework,this study conducted an analysis on the spatial patterns and dynamic spatial-temporal interactions of carbon footprints from 2001–2013.The improved Tapio decoupling model was adopted to investigate the levels of coupling or decoupling between the carbon emission load and economic growth in 336 prefecture-level units.The results show that,firstly,high accuracy was achieved by the model in simulating carbon emissions.Secondly,the total carbon footprints and carbon deficits across China increased with average annual growth rates of 4.82%and 5.72%,respectively.The overall carbon footprints and carbon deficits were larger in the North than that in the South.There were extremely significant spatial autocorrelation features in the carbon footprints of prefecture-level units.Thirdly,the relative lengths of the Local Indicators of Spatial Association(LISA)time paths were longer in the North than that in the South,and they increased from the coastal to the central and western regions.Lastly,the overall decoupling index was mainly a weak decoupling type,but the number of cities with this weak decoupling continued to decrease.The unsustainable development trend of China’s economic growth and carbon emission load will continue for some time.
基金supported by the National Key R&D Program of China(2018YFA0404402)the National Natural Science Foundation of China(11525524,12070131001,12047503,11975237,and 11961141004)+1 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDB-SSWSYS013)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB34010000 and XDPB15)。
文摘To explore the rotational excitation of deformed halo nuclei,the angular momentum projection(AMP)has been implemented in the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc),in which both the mean field and collective wave functions are expanded in terms of Dirac WoodsSaxon basis.The DRHBc+AMP approach self-consistently describes the coupling between single particle bound states and the continuum not only in the ground state but also in rotational states.The rotational modes of deformed halos in ^(42,44)Mg are investigated by studying properties of rotational states such as the excitation energy,configuration,and density distribution.Our study demonstrates that the deformed halo structure persists from the ground state in the intrinsic frame to collective states.Especially,the typical behavior of shape decoupling effects in rotating deformed halo nuclei is revealed.