Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the ...Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the growth rate of diamond film decreases gradually, and the nitrogen-vacancy(NV) center luminescence intensity increases first and then weakens. The results show that oxygen in laughing gas has a strong inhibitory effect on formation of NV centers, and the inhibitory effect would be stronger as the concentration of laughing gas increases. As a result, the film growth rate and nitrogen-related compensation donor decrease, beneficial to increase the acceptor concentration(~3.2×10^(19)cm^(-3)) in the film. Moreover, it is found that the optimal regulation with the quality and electrical properties of boron doped diamond films could be realized by adding appropriate laughing gas, especially the hole mobility(~700cm^(2)/V·s), which is beneficial to the realization of high-quality boron doped diamond films and high-level optoelectronic device applications in the future.展开更多
Heteroatom-doped carbon-based transition-metal single-atom catalysts(SACs) are promising electrocatalysts for oxygen reduction reaction(ORR). Herein, with the aid of hierarchically porous silica as hard template, a fa...Heteroatom-doped carbon-based transition-metal single-atom catalysts(SACs) are promising electrocatalysts for oxygen reduction reaction(ORR). Herein, with the aid of hierarchically porous silica as hard template, a facile and general melting perfusion and mesopore-confined pyrolysis method was reported to prepare single-atomic Fe/N–S-doped carbon catalyst(FeNx/NC-S) with hierarchically porous structure and well-defined morphology. The FeNx/NC-S exhibited excellent ORR activity with a half-wave potential(E_(1/2)) of 0.92 V, and a lower overpotential of 320 mV at a current density of 10 mA cm^(-2)for OER under alkaline condition. The remarkable electrocatalysis performance can be attributed to the hierarchically porous carbon nanospheres with S doping and high content of Fe-Nx sites(up to 3.7 wt% of Fe), resulting from the nano-confinement effect of the hierarchically porous silica spheres(NKM-5) during the pyrolysis process. The rechargeable Zn-air battery with FeNx/NC-S as a cathode catalyst demonstrated a superior power density of 194.5 mW cm-2charge–discharge stability. This work highlights a new avenue to design advanced SACs for efficient sustainable energy storage and conversion.展开更多
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods...Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.展开更多
The morphology effect of Zr-doped CeOwas studied in terms of their activities in the selective oxidation of styrene to styrene oxide using tert-butyl hydroperoxide as the oxidant. In the present work, Zrdoped CeOnanor...The morphology effect of Zr-doped CeOwas studied in terms of their activities in the selective oxidation of styrene to styrene oxide using tert-butyl hydroperoxide as the oxidant. In the present work, Zrdoped CeOnanorods exhibited the highest catalytic performance(yield of styrene oxide and TOF value)followed by nanoparticles and nanocubes. For the Zr-doped CeOnanorods, the apparent activation energy is 56.3 k J/mol, which is much lower than the values of catalysts supported on nanoparticles and nanocubes(73.3 and 93.4 k J/mol). The high resolution transmission electron microscopy results indicated that(100) and(110) crystal planes are predominantly exposed for Zr-doped CeOnanorods while(100)and(111) for nanocubes,(111) for nanoparticles. The remarkably increased catalytic activity of the Zrdoped CeOnanorods is mainly attributed to the higher percentage of Cespecies and more oxygen vacancies, which are associated with their exposed(100) and(110) crystal planes. Furthermore, recycling studies proved that the heterogeneous Zr-doped CeOnanorods did not lose its initial high catalytic activity after five successive recycles.展开更多
Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated.Results show that,with adding a small amount of oxygen(oxygen-to-carbon ratio<5.0%),the crystal quality of diamond is...Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated.Results show that,with adding a small amount of oxygen(oxygen-to-carbon ratio<5.0%),the crystal quality of diamond is improved,and a suppression effect of residual nitrogen is observed.With increasing ratio of O/C from 2.5%to 20.0%,the hole concentration is firstly increased then reduced.This change of hole concentration is also explained.Moreover,the results of Hall effect measurement with temperatures from 300 K to 825 K show that,with adding a small amount of oxygen,boron and oxygen complex structures(especially B_(3)O and B_(4)O)are formed and exhibit as shallow donor in diamond,which results in increase of donor concentration.With further increase of ratio of O/C,the inhibitory behaviors of oxygen on boron leads to decrease of acceptor concentration(the optical emission spectroscopy has shown that it is decreased with ratio of O/C more than 10.0%).This work demonstrates that oxygen-doping induced increasement of the crystalline and surface quality could be restored by the co-doping with oxygen.The technique could achieve boron-doped diamond films with both high quality and acceptable hole concentration,which is applicable to electronic level of usage.展开更多
Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, COreduction, etc. Precious-metal-free or metal-free nanocarbon-based...Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, COreduction, etc. Precious-metal-free or metal-free nanocarbon-based electrocatalysts have been revealed to potentially have effective activity and remarkable durability, which is promising to replace precious metals in some important energy technologies,such as fuel cells, metal–air batteries, and water splitting. In this review, rather than overviewing recent progress completely, we aim to give an in-depth digestion of present achievements, focusing on the different roles of nanocarbons and material design principles. The multifunctionalities of nanocarbon substrates(accelerating the electron and mass transport, regulating the incorporation of active components,manipulating electron structures, generating confinement effects, assembly into 3 D free-standing electrodes) and the intrinsic activity of nanocarbon catalysts(multi-heteroatom doping, hierarchical structure,topological defects) are discussed systematically, with perspectives on the further research in this rising research field. This review is inspiring for more insights and methodical research in mechanism understanding, material design, and device optimization, leading to a targeted and high-efficiency development of energy electrocatalysis.展开更多
The electrical conductivity of LPCVD polysilicon doped with oxygen atoms(acromymSIPOS)films has been measured to study the electrical properties of SIPOS.The results showthat the electrical properties of SIPOS depend ...The electrical conductivity of LPCVD polysilicon doped with oxygen atoms(acromymSIPOS)films has been measured to study the electrical properties of SIPOS.The results showthat the electrical properties of SIPOS depend on both oxygen contents and annealing processes.The electrical conductivity decreases while the oxygen content in SIPOS increases.The temper-.ature dependence of the electrical conductivity of SIPOS during annealing shows that there aretwo kinds of conduction mechanisms,that is,conductivities of SIPOS are concerned in the reac-tion of Si-O bonds and the recrystallization of SIPOS during low temperature500℃)and hightemperature900℃)annealing,respectively.In addition,the doping effect on the conductivityof SIPOS has been studied.It has been observed that doping made the increase of conductivityin SIPOS,but the oxygen contents apparently suppressed the increase of conductivity in doped-SIPOS.展开更多
二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方...二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方法。本文开展了氧等离子体对二硫化钼(MoS_(2))掺杂特性的研究。首先,测试了MoS_(2)场效应晶体管(field-effect transistor,FET)的输运特性,发现氧等离子体处理对FET具有p型掺杂作用。随后,通过拉曼光谱研究了掺杂机制的成因,并证实了沟道表面类MoO_(3)缺陷的形成。最后,研究了经等离子体处理的晶体管的湿度传感特性,由于氧等离子体处理使得沟道对水分子的吸收中心增加,在潮湿环境下晶体管具有十分灵敏的响应特性,源漏电流值变化了约54%。这项工作不仅提供了一种调控TMD电学性能的简单方法,也展示了低维材料化学传感器的发展潜力。展开更多
The doping content of Mg plays an important role in the crystalline structure and morphology properties of Zn_(1-x )Mg_xO thin films. Here,using radio-frequency magnetron sputtering method,we prepared Zn_(1-x )Mg_xO t...The doping content of Mg plays an important role in the crystalline structure and morphology properties of Zn_(1-x )Mg_xO thin films. Here,using radio-frequency magnetron sputtering method,we prepared Zn_(1-x )Mg_xO thin films on single crystalline Si(100) substrates with a series of x values. By means of X-ray diffraction(XRD) and scanning electron microscope(SEM),the crystalline structure and morphology of Zn_(1-x )Mg_xO thin films with different x values are investigated. The crystalline structure of Zn_(1-x )Mg_xO thin film is single phase with x<0.3,while there is phase separation phenomenon with x>0.3,and hexagonal and cubic structures will coexist in Zn_(1-x )Mg_xO thin films with higher x values. Especially with lower x values,a shoulder peak of 35.1° appearing in the XRD pattern indicates a double-crystalline structure of Zn_(1-x )Mg_xO thin film. The crystalline quality has been improved and the inner stress has been released,after the Zn_(1-x )Mg_xO thin films were annealed at 600 °C in vacuum condition.展开更多
Simultaneously integrating heterogeneous interface,element doping,and metal decorating was a promising strategy to promote the visible-light-driven photocatalytic activity.Herein,we demonstrated a facile solvothermal ...Simultaneously integrating heterogeneous interface,element doping,and metal decorating was a promising strategy to promote the visible-light-driven photocatalytic activity.Herein,we demonstrated a facile solvothermal route for Ni-doped BiOBr/Bi^(0) with ZnO 3D hierarchical heterojunction(denoted as Z@B/BiNi).The optimal photocatalysts of Z@B/Bi-Ni sample presented a remarkable catalytic performance of high concentrations of tetracycline solution(40 mg/L)than those of the Z@B/Bi,Z@B,BOB and ZnO photocatalysts toward the visible-light-driven degradation.The enhanced photocatalytic mechanism can be proposed as follows:(ⅰ)3D hierarchical heterojunction provided more active sites and accelerated the separation of charge carriers for photocatalytic TC;(ⅱ)formation of oxygen vacancies on the surface over Z@B/Bi-Ni by in-situ reduction of Bi^(0) and Ni doping could serve as the active sites for oxygen activation to adsorb free O_(2) and generate more superoxide radicals;(ⅲ)SPR effect of Bi metal were beneficial to carrier separation and also act as the active site to trap O_(2) molecules.This work clarified the role of unique morphologies,surface plasmonic resonance(SPR)effect of metal Bi,and Ni doping in Z@B/Bi-Ni,and its photocatalytic reaction mechanism was proposed by a series of experiments,characterization and DFT calculations,arousing a new perspective to design hierarchical heterojunction photocatalysts.展开更多
基金Project supported by the National Key R&D Program of China (Grant Nos. 2018YFB0406502, 2017YFF0210800, and 2017YFB0403003)the National Natural Science Foundation of China (Grant Nos. 61974059, 61674077, and 61774081)+1 种基金the Natural Science Foundation of Jiangsu Province (Grant No. BK20160065)the Fundamental Research Funds for the Central Universities。
文摘Regulation with nitrogen and oxygen co-doping on growth and properties of boron doped diamond films is studied by using laughing gas as dopant. As the concentration of laughing gas(N2O/C) increases from 0 to 10%, the growth rate of diamond film decreases gradually, and the nitrogen-vacancy(NV) center luminescence intensity increases first and then weakens. The results show that oxygen in laughing gas has a strong inhibitory effect on formation of NV centers, and the inhibitory effect would be stronger as the concentration of laughing gas increases. As a result, the film growth rate and nitrogen-related compensation donor decrease, beneficial to increase the acceptor concentration(~3.2×10^(19)cm^(-3)) in the film. Moreover, it is found that the optimal regulation with the quality and electrical properties of boron doped diamond films could be realized by adding appropriate laughing gas, especially the hole mobility(~700cm^(2)/V·s), which is beneficial to the realization of high-quality boron doped diamond films and high-level optoelectronic device applications in the future.
基金supported by National Natural Science Foundation of China (21773128)。
文摘Heteroatom-doped carbon-based transition-metal single-atom catalysts(SACs) are promising electrocatalysts for oxygen reduction reaction(ORR). Herein, with the aid of hierarchically porous silica as hard template, a facile and general melting perfusion and mesopore-confined pyrolysis method was reported to prepare single-atomic Fe/N–S-doped carbon catalyst(FeNx/NC-S) with hierarchically porous structure and well-defined morphology. The FeNx/NC-S exhibited excellent ORR activity with a half-wave potential(E_(1/2)) of 0.92 V, and a lower overpotential of 320 mV at a current density of 10 mA cm^(-2)for OER under alkaline condition. The remarkable electrocatalysis performance can be attributed to the hierarchically porous carbon nanospheres with S doping and high content of Fe-Nx sites(up to 3.7 wt% of Fe), resulting from the nano-confinement effect of the hierarchically porous silica spheres(NKM-5) during the pyrolysis process. The rechargeable Zn-air battery with FeNx/NC-S as a cathode catalyst demonstrated a superior power density of 194.5 mW cm-2charge–discharge stability. This work highlights a new avenue to design advanced SACs for efficient sustainable energy storage and conversion.
基金supported by National Natural Science Foundation of China (21876168, 21507130)Youth Innovation Promotion Association of CAS (2019376)the Chongqing Science & Technology Commission (cstc2016jcyjA0070, cstckjcxljrc13)~~
文摘Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.
基金the financial support from NNSFC(Project 21373054,21303023,21173052)the Natural Science Foundation of Shanghai Science and Technology Committee(08DZ2270500)
文摘The morphology effect of Zr-doped CeOwas studied in terms of their activities in the selective oxidation of styrene to styrene oxide using tert-butyl hydroperoxide as the oxidant. In the present work, Zrdoped CeOnanorods exhibited the highest catalytic performance(yield of styrene oxide and TOF value)followed by nanoparticles and nanocubes. For the Zr-doped CeOnanorods, the apparent activation energy is 56.3 k J/mol, which is much lower than the values of catalysts supported on nanoparticles and nanocubes(73.3 and 93.4 k J/mol). The high resolution transmission electron microscopy results indicated that(100) and(110) crystal planes are predominantly exposed for Zr-doped CeOnanorods while(100)and(111) for nanocubes,(111) for nanoparticles. The remarkably increased catalytic activity of the Zrdoped CeOnanorods is mainly attributed to the higher percentage of Cespecies and more oxygen vacancies, which are associated with their exposed(100) and(110) crystal planes. Furthermore, recycling studies proved that the heterogeneous Zr-doped CeOnanorods did not lose its initial high catalytic activity after five successive recycles.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFB0406502,2017YFF0210800,and 2017YFB0403003)the National Natural Science Foundation of China(Grant Nos.61774081,61775203,61574075,61974059,61674077,and 91850112)+2 种基金the State Key Research and Development Project of Jiangsu,China(Grant No.BE2018115)State Key Laboratory of Wide-Bandgap Semiconductor Power Electric Devices(Grant No.2017KF001)Anhui University Natural Science Research Project(Grant No.KJ2021A0037)
文摘Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated.Results show that,with adding a small amount of oxygen(oxygen-to-carbon ratio<5.0%),the crystal quality of diamond is improved,and a suppression effect of residual nitrogen is observed.With increasing ratio of O/C from 2.5%to 20.0%,the hole concentration is firstly increased then reduced.This change of hole concentration is also explained.Moreover,the results of Hall effect measurement with temperatures from 300 K to 825 K show that,with adding a small amount of oxygen,boron and oxygen complex structures(especially B_(3)O and B_(4)O)are formed and exhibit as shallow donor in diamond,which results in increase of donor concentration.With further increase of ratio of O/C,the inhibitory behaviors of oxygen on boron leads to decrease of acceptor concentration(the optical emission spectroscopy has shown that it is decreased with ratio of O/C more than 10.0%).This work demonstrates that oxygen-doping induced increasement of the crystalline and surface quality could be restored by the co-doping with oxygen.The technique could achieve boron-doped diamond films with both high quality and acceptable hole concentration,which is applicable to electronic level of usage.
基金supported by the National Key Research and Development Program (Nos. 2016YFA0202500 and 2016YFA0200102)the Natural Scientific Foundation of China (No. 21561130151)Royal Society for the award of a Newton Advanced Fellowship (Ref: NA140249)
文摘Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, COreduction, etc. Precious-metal-free or metal-free nanocarbon-based electrocatalysts have been revealed to potentially have effective activity and remarkable durability, which is promising to replace precious metals in some important energy technologies,such as fuel cells, metal–air batteries, and water splitting. In this review, rather than overviewing recent progress completely, we aim to give an in-depth digestion of present achievements, focusing on the different roles of nanocarbons and material design principles. The multifunctionalities of nanocarbon substrates(accelerating the electron and mass transport, regulating the incorporation of active components,manipulating electron structures, generating confinement effects, assembly into 3 D free-standing electrodes) and the intrinsic activity of nanocarbon catalysts(multi-heteroatom doping, hierarchical structure,topological defects) are discussed systematically, with perspectives on the further research in this rising research field. This review is inspiring for more insights and methodical research in mechanism understanding, material design, and device optimization, leading to a targeted and high-efficiency development of energy electrocatalysis.
文摘The electrical conductivity of LPCVD polysilicon doped with oxygen atoms(acromymSIPOS)films has been measured to study the electrical properties of SIPOS.The results showthat the electrical properties of SIPOS depend on both oxygen contents and annealing processes.The electrical conductivity decreases while the oxygen content in SIPOS increases.The temper-.ature dependence of the electrical conductivity of SIPOS during annealing shows that there aretwo kinds of conduction mechanisms,that is,conductivities of SIPOS are concerned in the reac-tion of Si-O bonds and the recrystallization of SIPOS during low temperature500℃)and hightemperature900℃)annealing,respectively.In addition,the doping effect on the conductivityof SIPOS has been studied.It has been observed that doping made the increase of conductivityin SIPOS,but the oxygen contents apparently suppressed the increase of conductivity in doped-SIPOS.
基金National Natural Science Foundation of China(No.62005042)。
文摘二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方法。本文开展了氧等离子体对二硫化钼(MoS_(2))掺杂特性的研究。首先,测试了MoS_(2)场效应晶体管(field-effect transistor,FET)的输运特性,发现氧等离子体处理对FET具有p型掺杂作用。随后,通过拉曼光谱研究了掺杂机制的成因,并证实了沟道表面类MoO_(3)缺陷的形成。最后,研究了经等离子体处理的晶体管的湿度传感特性,由于氧等离子体处理使得沟道对水分子的吸收中心增加,在潮湿环境下晶体管具有十分灵敏的响应特性,源漏电流值变化了约54%。这项工作不仅提供了一种调控TMD电学性能的简单方法,也展示了低维材料化学传感器的发展潜力。
基金supported by the National Natural Science Foundation of China(Nos.20473077 and 61540071)the Project of Natural Science Research of High Education in Jiangsu Province(No.15KJD140002)+2 种基金the Fundamental Research Funds of Changzhou Science and Technology Bureau(No.CJ20160026)the Changzhou Modern Optoelectronic Technology Research Institute Funds(No.CZGY13)the Natural Science Funds of Changzhou Institute of Technology(No.YN1408)
文摘The doping content of Mg plays an important role in the crystalline structure and morphology properties of Zn_(1-x )Mg_xO thin films. Here,using radio-frequency magnetron sputtering method,we prepared Zn_(1-x )Mg_xO thin films on single crystalline Si(100) substrates with a series of x values. By means of X-ray diffraction(XRD) and scanning electron microscope(SEM),the crystalline structure and morphology of Zn_(1-x )Mg_xO thin films with different x values are investigated. The crystalline structure of Zn_(1-x )Mg_xO thin film is single phase with x<0.3,while there is phase separation phenomenon with x>0.3,and hexagonal and cubic structures will coexist in Zn_(1-x )Mg_xO thin films with higher x values. Especially with lower x values,a shoulder peak of 35.1° appearing in the XRD pattern indicates a double-crystalline structure of Zn_(1-x )Mg_xO thin film. The crystalline quality has been improved and the inner stress has been released,after the Zn_(1-x )Mg_xO thin films were annealed at 600 °C in vacuum condition.
基金supported by the National Natural Science Foundation of China(No.21576211)Tianjin Program of Science and Technology(No.21ZYJDJC00100)+1 种基金Tianjin Innovative Research Team in Universities(No.TD13-5031)Tianjin 131 Research Team of Innovative Talents。
文摘Simultaneously integrating heterogeneous interface,element doping,and metal decorating was a promising strategy to promote the visible-light-driven photocatalytic activity.Herein,we demonstrated a facile solvothermal route for Ni-doped BiOBr/Bi^(0) with ZnO 3D hierarchical heterojunction(denoted as Z@B/BiNi).The optimal photocatalysts of Z@B/Bi-Ni sample presented a remarkable catalytic performance of high concentrations of tetracycline solution(40 mg/L)than those of the Z@B/Bi,Z@B,BOB and ZnO photocatalysts toward the visible-light-driven degradation.The enhanced photocatalytic mechanism can be proposed as follows:(ⅰ)3D hierarchical heterojunction provided more active sites and accelerated the separation of charge carriers for photocatalytic TC;(ⅱ)formation of oxygen vacancies on the surface over Z@B/Bi-Ni by in-situ reduction of Bi^(0) and Ni doping could serve as the active sites for oxygen activation to adsorb free O_(2) and generate more superoxide radicals;(ⅲ)SPR effect of Bi metal were beneficial to carrier separation and also act as the active site to trap O_(2) molecules.This work clarified the role of unique morphologies,surface plasmonic resonance(SPR)effect of metal Bi,and Ni doping in Z@B/Bi-Ni,and its photocatalytic reaction mechanism was proposed by a series of experiments,characterization and DFT calculations,arousing a new perspective to design hierarchical heterojunction photocatalysts.