The mechanisms of solid particle erosion of several pure metals and steels at low impact angle were studied comprehensively by SEM observations of the worn surface,wear debris analysis, subsurface hardness measurement...The mechanisms of solid particle erosion of several pure metals and steels at low impact angle were studied comprehensively by SEM observations of the worn surface,wear debris analysis, subsurface hardness measurements,incremental erosion tests and sequential erosion study techniques. It was found that at the beginning of erosion,craters and lips were formed on the surfaces of ductile metals due to the deformation caused by the impacting of the particles. The deformed lips were then forged back and forth again and again in erosion process. As a result , small chips of deformed lips were stripped off continuously in the process. All of the evidences show that the erosion mechanisms are encompassed mainly by the process of plastic deformation,lip formation and spelling with ductile metals,while microcutting is more easy to occur with hardened steels.展开更多
Roads are conspicuous components in a river landscape;however,their impacts on river landscape patterns and ecological processes have not been systematically studied at the watershed scale.In this paper,the Lancang Ri...Roads are conspicuous components in a river landscape;however,their impacts on river landscape patterns and ecological processes have not been systematically studied at the watershed scale.In this paper,the Lancang River Valley in Yunnan Province,China was selected as a case to study road lateral disconnection and crossing impacts and identify river-road network interaction.This study was primarily focused on the road impacts on soil erosion intensity and patch density by using GIS analysis at different scales and explored their distribution with terrain factors.The results showed that river density revealed spatial autocorrelation although both of the roads and rivers were distributed unevenly in the valley.The lateral road(road curvature≥1.1)proportion correlated with soil erosion intensity(p 0.01)at the small sub-basin scale.Soil erosion intensity decreased with increasing lateral road buffer width.Light erosion generally accounted for a large proportion of the erosion in the lateral road buffer zones(1.0–4.0 km),while higher class lateral roads imposed greater impacts on soil erosion than lower class roads,which primarily had a moderate erosion level.In addition,the results of road-river intersection density indicated that road crossing impacts were significantly correlated with patch density at the small sub-basin scale.Topography factor(percent of slope>25°in each sub-basin had a close relationship with the ratio of total length of road line with curvature value≥1.1 to the total number of intersections.The correlation(p 0.01)between road impacts and terrain factor revealed that topography affected the road impact distribution in the Lancang River Valley.展开更多
The erosion resistance tests were used to research the erosion wear behavior of CaO-Al-2O-3-SiO-2 system glass-ceramic. With the orthogonal test method, the factors that affect the erosion wear of CaO-Al-2O-3-SiO-2 sy...The erosion resistance tests were used to research the erosion wear behavior of CaO-Al-2O-3-SiO-2 system glass-ceramic. With the orthogonal test method, the factors that affect the erosion wear of CaO-Al-2O-3-SiO-2 system glass-ceramic such as particles property, impact angle, impact time, size of particles were discussed.The results show that erosion rate rises along a straight line at the early period of erosion wear.With the impact time increased,the erosion rate deviates from original staight line,tendency of the erosion rate increases.With the size of paricle increased,it will have more kinetic energy,the erosion rate of the surface of glass-ceramics ploate rises.展开更多
The erosion behavior of a QA19-4 alloy as a ship propeller material was investigated.The effects of the solution,the impact angles and the sand content were considered.The test results demonstrate that the mass loss o...The erosion behavior of a QA19-4 alloy as a ship propeller material was investigated.The effects of the solution,the impact angles and the sand content were considered.The test results demonstrate that the mass loss of the alloy in 3.5 wt%NaCl solution is 1.35 times that in tap water,due to the corrosive effect of Cl^(-).The mass loss of the alloy increases as the impact angle increases up to~30°and consequently decreases as the impact angle increases.Also,this feature is typical for the ductile metal behavior.At the impact angle of 0°,this feature is associated with the predominant erosion mechanisms,such as shallow plowing and surface fatigue;at 30°,this feature is micro-cutting,deep plowing and surface fatigue;and at 45°,it becomes indentation accompanied by extruded lips.The mass loss and surface roughness of the alloy increase as the sand content increases under the testing conditions.展开更多
The paper presents a study of model development for predicting the oxide thickness on metals under high temperature solid-particle erosion.The model is created based on the theory of solid-particle erosion that charac...The paper presents a study of model development for predicting the oxide thickness on metals under high temperature solid-particle erosion.The model is created based on the theory of solid-particle erosion that characterizes the erosion damage as deformation wear and cutting wear,incorporating the effect of the oxide scale on the eroded surface under high temperature erosion.Then the instantaneous oxide thickness is the result of the synergetic effect of erosion and oxidation.The developed model is applied on a Ni-based Al-containing(Ni–Al)alloy to investigate the oxide thickness variation with erosion duration of the alloy at high temperatures.The results show that the thickness of the oxide scale on the alloy surface increases with the exposure time and temperature when the surface is not attacked by particles.However,when particles impact on the alloy surface,the oxide thickness is reduced,although oxidation is continuing.This indicates that oxidation does not benefit the erosion resistance of this alloy at high temperatures due to the low growth rate of the oxide.展开更多
An advanced erosion model that correlates two model parameters—the energies required to remove unit mass of target material during cutting wear and deformation wear,respectively,with particle velocity,particle size a...An advanced erosion model that correlates two model parameters—the energies required to remove unit mass of target material during cutting wear and deformation wear,respectively,with particle velocity,particle size and density,as well as target material properties,is proposed.This model is capable of predicting the erosion rates for a material under solid-particle impact over a specific range of particle velocity at the impingement angle between 0◦and 90◦,provided that the experimental data of erosion rate for the material at a particle velocity within this range and at impingement angles between 0◦and 90◦are available.The proposed model is applied on three distinct types of materials:aluminum,perspex and graphite,to investigate the dependence behavior of the model parameters on particle velocity for ductile and brittle materials.The predicted model parameters obtained from the model are validated by the experimental data of aluminum plate under Al2O3 particle impact.The significance and limitation of the model are discussed;possible improvements on the model are suggested.展开更多
文摘The mechanisms of solid particle erosion of several pure metals and steels at low impact angle were studied comprehensively by SEM observations of the worn surface,wear debris analysis, subsurface hardness measurements,incremental erosion tests and sequential erosion study techniques. It was found that at the beginning of erosion,craters and lips were formed on the surfaces of ductile metals due to the deformation caused by the impacting of the particles. The deformed lips were then forged back and forth again and again in erosion process. As a result , small chips of deformed lips were stripped off continuously in the process. All of the evidences show that the erosion mechanisms are encompassed mainly by the process of plastic deformation,lip formation and spelling with ductile metals,while microcutting is more easy to occur with hardened steels.
基金Under the auspices of Nonprofit Environment Protection Specific Project of China(No.201209029-4)National Natural Science Foundation of China(No.50939001)
文摘Roads are conspicuous components in a river landscape;however,their impacts on river landscape patterns and ecological processes have not been systematically studied at the watershed scale.In this paper,the Lancang River Valley in Yunnan Province,China was selected as a case to study road lateral disconnection and crossing impacts and identify river-road network interaction.This study was primarily focused on the road impacts on soil erosion intensity and patch density by using GIS analysis at different scales and explored their distribution with terrain factors.The results showed that river density revealed spatial autocorrelation although both of the roads and rivers were distributed unevenly in the valley.The lateral road(road curvature≥1.1)proportion correlated with soil erosion intensity(p 0.01)at the small sub-basin scale.Soil erosion intensity decreased with increasing lateral road buffer width.Light erosion generally accounted for a large proportion of the erosion in the lateral road buffer zones(1.0–4.0 km),while higher class lateral roads imposed greater impacts on soil erosion than lower class roads,which primarily had a moderate erosion level.In addition,the results of road-river intersection density indicated that road crossing impacts were significantly correlated with patch density at the small sub-basin scale.Topography factor(percent of slope>25°in each sub-basin had a close relationship with the ratio of total length of road line with curvature value≥1.1 to the total number of intersections.The correlation(p 0.01)between road impacts and terrain factor revealed that topography affected the road impact distribution in the Lancang River Valley.
基金FundedbytheNaturalScienceFoundationofHubeiProv ince (2 0 0 2AB0 77)
文摘The erosion resistance tests were used to research the erosion wear behavior of CaO-Al-2O-3-SiO-2 system glass-ceramic. With the orthogonal test method, the factors that affect the erosion wear of CaO-Al-2O-3-SiO-2 system glass-ceramic such as particles property, impact angle, impact time, size of particles were discussed.The results show that erosion rate rises along a straight line at the early period of erosion wear.With the impact time increased,the erosion rate deviates from original staight line,tendency of the erosion rate increases.With the size of paricle increased,it will have more kinetic energy,the erosion rate of the surface of glass-ceramics ploate rises.
基金financially supported by the National Natural Science Foundation of China(No.51171216)the National"Ten Thousand Plan"Scientific and Technological Innovation Leading Talent Project。
文摘The erosion behavior of a QA19-4 alloy as a ship propeller material was investigated.The effects of the solution,the impact angles and the sand content were considered.The test results demonstrate that the mass loss of the alloy in 3.5 wt%NaCl solution is 1.35 times that in tap water,due to the corrosive effect of Cl^(-).The mass loss of the alloy increases as the impact angle increases up to~30°and consequently decreases as the impact angle increases.Also,this feature is typical for the ductile metal behavior.At the impact angle of 0°,this feature is associated with the predominant erosion mechanisms,such as shallow plowing and surface fatigue;at 30°,this feature is micro-cutting,deep plowing and surface fatigue;and at 45°,it becomes indentation accompanied by extruded lips.The mass loss and surface roughness of the alloy increase as the sand content increases under the testing conditions.
文摘The paper presents a study of model development for predicting the oxide thickness on metals under high temperature solid-particle erosion.The model is created based on the theory of solid-particle erosion that characterizes the erosion damage as deformation wear and cutting wear,incorporating the effect of the oxide scale on the eroded surface under high temperature erosion.Then the instantaneous oxide thickness is the result of the synergetic effect of erosion and oxidation.The developed model is applied on a Ni-based Al-containing(Ni–Al)alloy to investigate the oxide thickness variation with erosion duration of the alloy at high temperatures.The results show that the thickness of the oxide scale on the alloy surface increases with the exposure time and temperature when the surface is not attacked by particles.However,when particles impact on the alloy surface,the oxide thickness is reduced,although oxidation is continuing.This indicates that oxidation does not benefit the erosion resistance of this alloy at high temperatures due to the low growth rate of the oxide.
基金financial support from Natural Science&Engineering Research Council of Canada(NSERC)the in-kind support from National Research Council Canada(NRC)and both financial and in-kind support from Kennametal Stellite Inc.
文摘An advanced erosion model that correlates two model parameters—the energies required to remove unit mass of target material during cutting wear and deformation wear,respectively,with particle velocity,particle size and density,as well as target material properties,is proposed.This model is capable of predicting the erosion rates for a material under solid-particle impact over a specific range of particle velocity at the impingement angle between 0◦and 90◦,provided that the experimental data of erosion rate for the material at a particle velocity within this range and at impingement angles between 0◦and 90◦are available.The proposed model is applied on three distinct types of materials:aluminum,perspex and graphite,to investigate the dependence behavior of the model parameters on particle velocity for ductile and brittle materials.The predicted model parameters obtained from the model are validated by the experimental data of aluminum plate under Al2O3 particle impact.The significance and limitation of the model are discussed;possible improvements on the model are suggested.