Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are di...Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine.展开更多
The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ...The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.展开更多
The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned w...The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned with a pulsed laser.With variation of the collector bias and pulsed laser incident energy, the single event transient of the SiGe HBT was studied.Moreover, the single event transient produced by laser irradiation at a wavelength of 532 nm was more pronounced than at a wavelength of 1064 nm. Finally, the impact of the equivalent linear energy transfer of the 1064 nm pulsed laser on the single event transient was qualitatively examined by performing technology computer-aided design simulations, and a good consistency between the experimental data and the simulated outcomes was attained.展开更多
A preliminary study of the PGA attenuation, hanging wall effect and velocity pulse characteristics from the 2008 Wenchuan earthquake ofMS -8.0 is described in this paper. The study was carried out through analyses in ...A preliminary study of the PGA attenuation, hanging wall effect and velocity pulse characteristics from the 2008 Wenchuan earthquake ofMS -8.0 is described in this paper. The study was carried out through analyses in the time and frequency domains of main earthquake records. In the PGA attenuation study, records from 316 stations less than 1000 km from the surface rupture of the fault were used as a database and attenuation relationships were developed and compared with some existing relationships that are widely used in China's Mainland, Chinese Taiwan and the US. At the same time, records from 28 stations less than 100 km from the fault were used to study the hanging wall effect and velocity pulse characteristics of this earthquake based on the distribution of PGA, PGV, spectral acceleration, and the velocity pulse peak, and the results are compared with the 1999 Chi-Chi earthquake. In addition, the large PGAs of the UD components observed in this event are also discussed in this paper. From the results of the preliminary study, some conclusions are developed and suggestions for further research are proposed.展开更多
Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using h...Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using heavy ions and a picosecond pulsed laser. The cross sections of a single event upset(SEU) for radiationhardened PROMs were measured using a linear energy transfer(LET) ranging from 9.2 to 95.6 MeV cm^2mg^(-1).The result indicated that the LET threshold for a dynamic bit upset was ~ 9 MeV cm^2mg^(-1), which was lower than the threshold of ~ 20 MeV cm^2mg^(-1) for an address counter upset owing to the additional triple modular redundancy structure present in the latch. In addition, a slight hard error was observed in the anti-fuse structure when employing209 Bi ions with extremely high LET values(~ 91.6 MeV cm^2mg^(-1)) and large ion fluence(~ 1×10~8 ions cm^(-2)). To identify the detailed sensitive position of a SEU in PROMs, a pulsed laser with a 5-μm beam spot was used to scan the entire surface of the device.This revealed that the upset occurred in the peripheral circuits of the internal power source and I/O pairs rather than in the internal latches and buffers. This was subsequently confirmed by a ^(181)Ta experiment. Based on the experimental data and a rectangular parallelepiped model of the sensitive volume, the space error rates for the used PROMs were calculated using the CRèME-96 prediction tool. The results showed that this type of PROM was suitable for specific space applications, even in the geosynchronous orbit.展开更多
In this paper, modifications to the finite-difference time-domain(FD-TD) method for modeling microwave pulse coupling into a slot, which is much narrower than one conventional FD-TD cell, are discussed. The coupling p...In this paper, modifications to the finite-difference time-domain(FD-TD) method for modeling microwave pulse coupling into a slot, which is much narrower than one conventional FD-TD cell, are discussed. The coupling process of microwave pulse into a slot is studied by using the modified FD-TD method, and the dependence of microwave coupling on slot sizes, the carrier frequencies and the polarization directions of the incident waves is analysed. Resonant and enhancement effects which occur in this process are observed. The condition at which the resonant effect takes place is also presented.展开更多
This paper presents a theoretical study of the pulse-width effects on the damage process of a typical bipolar transistor caused by high power microwaves(HPMs) through the injection approach.The dependences of the mi...This paper presents a theoretical study of the pulse-width effects on the damage process of a typical bipolar transistor caused by high power microwaves(HPMs) through the injection approach.The dependences of the microwave damage power,P,and the absorbed energy,E,required to cause the device failure on the pulse width τ are obtained in the nanosecond region by utilizing the curve fitting method.A comparison of the microwave pulse damage data and the existing dc pulse damage data for the same transistor is carried out.By means of a two-dimensional simulator,ISE-TCAD,the internal damage processes of the device caused by microwave voltage signals and dc pulse voltage signals are analyzed comparatively.The simulation results suggest that the temperature-rising positions of the device induced by the microwaves in the negative and positive half periods are different,while only one hot spot exists under the injection of dc pulses.The results demonstrate that the microwave damage power threshold and the absorbed energy must exceed the dc pulse power threshold and the absorbed energy,respectively.The dc pulse damage data may be useful as a lower bound for microwave pulse damage data.展开更多
The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the d...The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results.展开更多
Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time re...Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time related ultra-short optical pulse trains in an optical fibre are numerically simulated by adopting the split-step Fourier algorithm. The results show that the self-steepening effect can cause the characteristic of the pulse trains to vary with time, which is different from the self-steepening-free case where the generated pulse trains consist of single pulses which are identical in width, intensity, and interval, namely when pulses move a certain distance, they turn into the pulse trains within a certain time range. Moreover, each single pulse may split into several sub-pulses. And as time goes on, the number of the sub-pulses will decrease gradually and the pulse width and the pulse intensity will change too. With the increase of the self-steepening parameter, the distance needed to generate time-dependent pulse trains will shorten. In addition, for a large self-steepening parameter and at the distance where more sub-pulses appear, the corresponding frequency spectra of pulse trains are also wider.展开更多
By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical res...By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.展开更多
The regulation of memory effect that the residual charges generated during and after discharge act on the initiation and development of subsequent discharge is explored by adjusting the pulse parameters,which have an ...The regulation of memory effect that the residual charges generated during and after discharge act on the initiation and development of subsequent discharge is explored by adjusting the pulse parameters,which have an influence on the discharge characteristics.The memory effect is quantified by the measurement of‘wall voltage’through a series of reference capacitors.The influences of memory effect on the discharge properties corresponding to rising/falling time50–500 ns,pulse width 0.5–1.5μs,and frequency 200–600 Hz are analyzed.It is found that the‘wall voltage’increases from 1.4 kV to 2.4 kV with rising/falling time from 50 ns to 500 ns,it varies in the range of 0.18 kV with frequency of 200–600 Hz,and 0.17 k V with pulse width of 0.5–1.5μs.The propagation velocity of wavelike ionization under the negative pulse slows down from 2184 km s-1to 1026 km s-1 as the rising/falling time increases from 50 ns to 500 ns due to the weakening of the electric field by the surface memory effect.More intense and uniform emission can be achieved through faster rising/falling time and higher frequency based on the volume memory effect,while pulse width has less influence on the emission uniformity.Furthermore,similar laws are obtained for spectral and discharge intensity.Therefore,the memory effect is most effectively regulated by rising/falling time,and the discharge properties are affected by the surface and volume memory effect.展开更多
Propylene carbonate (PC) has a great potential to be used as an energy storage medium in the compact pulsed power sources due to its high dielectric constant and large resistivity. We investigate both the positive a...Propylene carbonate (PC) has a great potential to be used as an energy storage medium in the compact pulsed power sources due to its high dielectric constant and large resistivity. We investigate both the positive and negative breakdown characteristics of PC. The streamer patterns are obtained by ultra-high-speed cameras. The experimental results show that the positive breakdown voltage of PC is about 135% higher than the negative one, which is abnormal compared with the common liquid. The shape of the positive streamer is filamentary and branchy, while the negative streamer is tree-like and less branched. According to these experimental results, a charge layer structure model at the interface between the metal electrode and liquid is presented. It is suggested that the abnormal polarity effect basically arises from the electric field strength difference in the interface between both electrodes and PC. What is more, the recombination radiation and photoionization also play an important role in the whole discharge process.展开更多
Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied throug...Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.展开更多
For uniform tube inner coating of non-conductive thin films, the double-ended coaxial magnetron pulsed plasma (DCMPP) method was investigated. In this study, coating of TiN and TiO2 was performed. It was clearly shown...For uniform tube inner coating of non-conductive thin films, the double-ended coaxial magnetron pulsed plasma (DCMPP) method was investigated. In this study, coating of TiN and TiO2 was performed. It was clearly shown that the extended anode effect was strongly influenced by the electric resistance of the coated thin films on the inner surface of an insulator tube. Additionally, high frequency (100 kHz) was better for relatively high plasma density. On the other hand, in the case of titanium oxide deposition, negative ion productions drastically decrease the deposition rate and the shifting velocity of plasma main position for coated TiO2 films.展开更多
The effects of three different typical resistivity models(Spitzer, Z&L and M&G) on the performance of pulsed inductive acceleration plasma are studied. Numerical results show that their influences decrease with th...The effects of three different typical resistivity models(Spitzer, Z&L and M&G) on the performance of pulsed inductive acceleration plasma are studied. Numerical results show that their influences decrease with the increase of the plasma temperature. The significant discriminations among them appear at the plasma temperature lower than 2.5 eV, and the maximum gap of the pulsed inductive plasma accelerated efficiency is approximately 2.5%.Moreover, the pulsed inductive plasma accelerated efficiency is absolutely related to the dynamic impedance parameters, such as voltage, inductance, capacitance and flow rate. However, the distribution of the efficiency as a function of plasma temperature with three resistivity models has nothing to do with the dynamic impedance parameter.展开更多
BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can no...BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can nourish nerve, postpone muscular atrophy, and help the postoperative neuromuscular function. OBJECTIVE: To observe the effects of low-frequency pulse percutaneous electric stimulation on the functional recovery of postoperative patients with peripheral nerve injury, and quantitatively evaluate the results of electromyogram (EMG) examination before and after treatment. DESIGN : A retrospective case analysis SETTING: The Sixth People's Hospital affiliated to Shanghai Jiaotong University PARTICIPANTS: Nineteen postoperative inpatients with peripheral nerve injury were selected from the De- partment of Orthopaedics, the Sixth People's Hospital affiliated to Shanghai Jiaotong University from June 2005 to January 2006, including 13 males and 6 females aged 24-62 years with an average of 36 years old. There were 3 cases of brachial plexus nerve injury, 3 of median nerve injury, 7 of radial nerve injury, 3 of ul- nar nerve injury and 3 of common peroneal nerve injury, and all the patients received probing nerve fiber restoration. Their main preoperative manifestations were dennervation, pain in limbs, motor and sensory disturbances. All the 19 patients were informed with the therapeutic program and items for evaluation. METHODS: ① Low-frequency pulse percutaneous electric stimulation apparatus: The patients were given electric stimulation with the TERESA cantata instrument (TERESA-0, Shanghai Teresa Health Technology, Co., Ltd.). The patients were stimulated with symmetric square waves of 1-111 Hz, and the intensity was 1.2-5.0 mA, and it was gradually adjusted according to the recovered conditions of neural regeneration following the principle that the intensity was strong enough and the patients felt no obvious upset. They were treated for 4- 24 weeks, 10-30 minutes for each time, 1-3 times a day, and 6 weeks as a course. ② EMG examination was applied to evaluate the recoveries of recruitment, motor conduction velocity (MCV) and sensory conduction velocity (SCV) before and after treatment. The patients were examined with the EMG apparatus (DIS- A2000C, Danmark) before and after the treatment of percutaneous electric stimulation. ③Standards for evaluating the effects included cured (complete recovery of motor functions, muscle strength of grade 5, no abnormality in EMG examination), obviously effective [general recovery of motor function, muscle strength of grade 4, no or a few denervation potentials, motor conduction velocity (MCV) and sensory conduction velocity (SCV)], improved (partial recovery of motor function, muscle strength of grade 3, denervation potentials and reinneration potentials, slowed MCV and SCV, invalid (no obvious changes of motor function). MAIN OUTCOME MEASURES: ① Ameliorated degree of the nerve function of the postoperative patients with peripheral nerve injury treated with percutaneous electric stimulation; ② Changes of EMG examination before and after treatment. RESULTS: All the 19 postoperative patients with peripheral nerve injury were involved in the analysis of results. ① Comparison of nerve function before and after treatment in 19 patients with peripheral nerve injury of different sites: For the patients with radial nerve injury (n=7), the nerve functions all completely recovered after 8-week treatment, and the cured and obvious rate was 100% (7/7); For the patients with brachial plexus nerve injury (n=3), 1 case had no obvious improvement, and the cured and obvious rate was 67% (2/3); For the patients with common peroneal nerve injury (n=3), the extension of foot dorsum generally recovered in 1 case of nerve contusion after 4-week treatment, and the cured and obvious rate was 67% (2/3); For the patients with median nerve injury (n=3), muscle strength was obviously recovered, and the cured and obvious rate was 100% (3/3); For the patients with ulnar nerve injury (n=3), 1 case only had recovery of partial senses, and the cured and obvious rate was 67% (2/3). Totally 9 cases were cured, 7 were obviously effective, 1 was improved, and only 2 were invalid. After 4 courses, the cured rate of damaged nerve function after four courses was 47% (9/19), and effective rate was 89% (17/19).② Comparison of EMG examination before and after treatment: Before and after percutaneous electric stimulation, he effective rates of recruitment, MCV and SCV were 89% (17/19), 58% (11/19), 47% (9/19) respectively, and there were extremely obvious differences (P〈 0.01). CONCLUSION: ①Low-frequency pulse percutaneous electric stimulation can improve the nerve function of postoperative patients with peripheral nerve injury of different sites, especially that the injuries of radial nerve and median nerve recover more obviously. ②Percutaneous electric stimulation can ameliorate the indexes of EMG examination, especially the recruitment, in postoperative patients with peripheral nerve injury.展开更多
In this paper,the nature and origin of single event effects(SEE) are studied by injecting laser pulses into different circuit blocks,combining with analysis to map pulse width modulators circuitry in the microchip die...In this paper,the nature and origin of single event effects(SEE) are studied by injecting laser pulses into different circuit blocks,combining with analysis to map pulse width modulators circuitry in the microchip die.A time-domain error-identification method is used in the temporal characteristic analysis of SEE.SEE signatures of different injection times are compared.More serious SEE are observed when the laser shot occurs on a rising edge of the device output for blocks of the error amplifier,current sense comparator,and T and SR latches.展开更多
The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with co...The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.展开更多
To evaluate the effect of pulse parameters on the formation of electrodeposits in concrete cracks, five different types of pulse current were set up, and ZnSO_4 and MgSO_4 solutions were used as the electrolytes. The ...To evaluate the effect of pulse parameters on the formation of electrodeposits in concrete cracks, five different types of pulse current were set up, and ZnSO_4 and MgSO_4 solutions were used as the electrolytes. The rate of weight gain, rate of surface coating, rate of crack closure and crack filling depth were measured. Scanning electron microscopy was used to assess the morphology of the electrodeposits, and energy dispersive spectroscopy was used to analyze the mineral composition of the electrodeposits in the cracks. The experimental results demonstrate that, among five different pulse parameters, when T_(on)/T_(off)=0.8 ms/0.8 ms, the healing effect of electro-deposition is the best. The pulse mode hardly affects the mineral composition of the electrodeposits but changes the micromorphology. In addition, for both ZnSO_4 and MgSO_4 solutions, when T_(on)/T_(off)=0.8 ms/0.8 ms, the crystal structure of the electrodeposits is the most uniform and the densest.展开更多
The spontaneous radiation from a single pulse electron beam in Free Electron Lasers is dealt withby solving one-dimensional wave equations.The obtained results show that there is the long pulse effect aswell as the we...The spontaneous radiation from a single pulse electron beam in Free Electron Lasers is dealt withby solving one-dimensional wave equations.The obtained results show that there is the long pulse effect aswell as the well-known short pulse effect.展开更多
基金financially supported by the National Natural Science Foundation of China through Grant Nos.12372338 and U2241272the Natural Science Foundation of Shaanxi Province of China through Grant Nos.2023-JC-YB-352 and 2022JZ-20+1 种基金the Guangdong Basic and Applied Basic Research Foundation through Grant No.2023A1515011663the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University through Grant No.PF2023010。
文摘Due to the strong unsteadiness of pulse detonation,large flow losses are generated when the detonation wave interacts with the turbine blades,resulting in low turbine efficiency.Considering that the flow losses are dissipated into the gas as heat energy,some of them can be recycled during the expansion process in subsequent stages by the reheat effect,which should be helpful to improve the detonationdriven turbine efficiency.Taking this into account,this paper developed a numerical model of the detonation chamber coupled with a two-stage axial turbine,and a stoichiometric hydrogen-air mixture was used.The improvement in turbine efficiency attributable to the reheat effect was calculated by comparing the average efficiency of the stages with the efficiency of the two-stage turbine.The research indicated that the first stage was critical in suppressing the flow unsteadiness caused by pulse detonation,which stabilized the intake condition of the second stage and consequently allowed much of the flow losses from the first stage to be recycled,so that the efficiency of the two-stage turbine was improved.At a 95%confidence level,the efficiency improvement was stable at 4.5%—5.3%,demonstrating that the reheat effect is significant in improving the efficiency of the detonation-driven turbine.
基金National Natural Science Foundation of China(61974116)。
文摘The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61574171, 61704127, 11875229,51872251, and 12027813)。
文摘The single event effect of a silicon–germanium heterojunction bipolar transistor(SiGe HBT) was thoroughly investigated. By considering the worst bias condition, the sensitive area of the proposed device was scanned with a pulsed laser.With variation of the collector bias and pulsed laser incident energy, the single event transient of the SiGe HBT was studied.Moreover, the single event transient produced by laser irradiation at a wavelength of 532 nm was more pronounced than at a wavelength of 1064 nm. Finally, the impact of the equivalent linear energy transfer of the 1064 nm pulsed laser on the single event transient was qualitatively examined by performing technology computer-aided design simulations, and a good consistency between the experimental data and the simulated outcomes was attained.
基金National Natural Science Foundation of China Under Grant No. 90715038 National Basic Research Program of China Under Grant No. 2007CB71420)the Basic Science & Research Foundation of Institute of Engineering Mechanics, CEA Under Grant No. 2006A02
文摘A preliminary study of the PGA attenuation, hanging wall effect and velocity pulse characteristics from the 2008 Wenchuan earthquake ofMS -8.0 is described in this paper. The study was carried out through analyses in the time and frequency domains of main earthquake records. In the PGA attenuation study, records from 316 stations less than 1000 km from the surface rupture of the fault were used as a database and attenuation relationships were developed and compared with some existing relationships that are widely used in China's Mainland, Chinese Taiwan and the US. At the same time, records from 28 stations less than 100 km from the fault were used to study the hanging wall effect and velocity pulse characteristics of this earthquake based on the distribution of PGA, PGV, spectral acceleration, and the velocity pulse peak, and the results are compared with the 1999 Chi-Chi earthquake. In addition, the large PGAs of the UD components observed in this event are also discussed in this paper. From the results of the preliminary study, some conclusions are developed and suggestions for further research are proposed.
基金supported by the National Natural Science Foundation of China(Nos.11690041,11805244,and 11675233)the Opening Project of Science and Technology on Reliability Physics and Application Technology of the Electronic Component Laboratory(No.ZHD 201604)
文摘Single event effects of 1-T structure programmable read-only memory(PROM) devices fabricated with a 130-nm complementary metal oxide semiconductorbased thin/thick gate oxide anti-fuse process were investigated using heavy ions and a picosecond pulsed laser. The cross sections of a single event upset(SEU) for radiationhardened PROMs were measured using a linear energy transfer(LET) ranging from 9.2 to 95.6 MeV cm^2mg^(-1).The result indicated that the LET threshold for a dynamic bit upset was ~ 9 MeV cm^2mg^(-1), which was lower than the threshold of ~ 20 MeV cm^2mg^(-1) for an address counter upset owing to the additional triple modular redundancy structure present in the latch. In addition, a slight hard error was observed in the anti-fuse structure when employing209 Bi ions with extremely high LET values(~ 91.6 MeV cm^2mg^(-1)) and large ion fluence(~ 1×10~8 ions cm^(-2)). To identify the detailed sensitive position of a SEU in PROMs, a pulsed laser with a 5-μm beam spot was used to scan the entire surface of the device.This revealed that the upset occurred in the peripheral circuits of the internal power source and I/O pairs rather than in the internal latches and buffers. This was subsequently confirmed by a ^(181)Ta experiment. Based on the experimental data and a rectangular parallelepiped model of the sensitive volume, the space error rates for the used PROMs were calculated using the CRèME-96 prediction tool. The results showed that this type of PROM was suitable for specific space applications, even in the geosynchronous orbit.
文摘In this paper, modifications to the finite-difference time-domain(FD-TD) method for modeling microwave pulse coupling into a slot, which is much narrower than one conventional FD-TD cell, are discussed. The coupling process of microwave pulse into a slot is studied by using the modified FD-TD method, and the dependence of microwave coupling on slot sizes, the carrier frequencies and the polarization directions of the incident waves is analysed. Resonant and enhancement effects which occur in this process are observed. The condition at which the resonant effect takes place is also presented.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60776034)
文摘This paper presents a theoretical study of the pulse-width effects on the damage process of a typical bipolar transistor caused by high power microwaves(HPMs) through the injection approach.The dependences of the microwave damage power,P,and the absorbed energy,E,required to cause the device failure on the pulse width τ are obtained in the nanosecond region by utilizing the curve fitting method.A comparison of the microwave pulse damage data and the existing dc pulse damage data for the same transistor is carried out.By means of a two-dimensional simulator,ISE-TCAD,the internal damage processes of the device caused by microwave voltage signals and dc pulse voltage signals are analyzed comparatively.The simulation results suggest that the temperature-rising positions of the device induced by the microwaves in the negative and positive half periods are different,while only one hot spot exists under the injection of dc pulses.The results demonstrate that the microwave damage power threshold and the absorbed energy must exceed the dc pulse power threshold and the absorbed energy,respectively.The dc pulse damage data may be useful as a lower bound for microwave pulse damage data.
基金supported by the National Basic Research Program of China(Grant No.2014CB339900)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(CAEP)(Grant No.2015-0214.XY.K)
文摘The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results.
基金supported by Key Program of Natural Science Foundation of Educational Commission of Sichuan Province, China (GrantNo 2006A124)the Fundamental Application Research Project of the Department of Science and Technology of Sichuan Province,China (Grant No 05JY029-084)the Foundation of Science and Technology Development of Chengdu University of Information Technology, China (Grant No KYTZ20060604)
文摘Starting from the extended nonlinear Schrodinger equation in which the self-steepening effect is included, the evolution and the splitting processes of continuous optical wave whose amplitude is perturbed into time related ultra-short optical pulse trains in an optical fibre are numerically simulated by adopting the split-step Fourier algorithm. The results show that the self-steepening effect can cause the characteristic of the pulse trains to vary with time, which is different from the self-steepening-free case where the generated pulse trains consist of single pulses which are identical in width, intensity, and interval, namely when pulses move a certain distance, they turn into the pulse trains within a certain time range. Moreover, each single pulse may split into several sub-pulses. And as time goes on, the number of the sub-pulses will decrease gradually and the pulse width and the pulse intensity will change too. With the increase of the self-steepening parameter, the distance needed to generate time-dependent pulse trains will shorten. In addition, for a large self-steepening parameter and at the distance where more sub-pulses appear, the corresponding frequency spectra of pulse trains are also wider.
基金Project supported by the National Science Foundation of Guangdong Province,China(Grant No04010397)
文摘By considering higher-order effects, the properties of self-similar parabolic pulses propagating in the microstructured fibre amplifier with a normal group-velocity dispersion have been investigated. The numerical results indicate that the higher-order effects can badly distort self-similar parabolic pulse shape and optical spectrum, and at the same time the peak shift and oscillation appear, while the pulse still reveals highly linear chirp but grows into asymmetry. The influence of different higher-order effects on self-similar parabolic pulse propagation has been analysed. It shows that the self-steepening plays a more important role. We can manipulate the geometrical parameters of the microstructured fibre amplifier to gain a suitable dispersion and nonlinearity coefficient which will keep high-quality self-similar parabolic pulse propagation. These results are significant for the further study of self-similar parabolic pulse propagation.
基金provided by National Natural Science Foundation of China(Nos.51807156 and 61771382)Projects of International Cooperation and Exchanges Shaanxi Province(No.2018KW034)+1 种基金China Postdoctoral Science Foundation(No.2017M623174)Central University Basic Scientific Research Operating Expenses(No.xpt012019041)。
文摘The regulation of memory effect that the residual charges generated during and after discharge act on the initiation and development of subsequent discharge is explored by adjusting the pulse parameters,which have an influence on the discharge characteristics.The memory effect is quantified by the measurement of‘wall voltage’through a series of reference capacitors.The influences of memory effect on the discharge properties corresponding to rising/falling time50–500 ns,pulse width 0.5–1.5μs,and frequency 200–600 Hz are analyzed.It is found that the‘wall voltage’increases from 1.4 kV to 2.4 kV with rising/falling time from 50 ns to 500 ns,it varies in the range of 0.18 kV with frequency of 200–600 Hz,and 0.17 k V with pulse width of 0.5–1.5μs.The propagation velocity of wavelike ionization under the negative pulse slows down from 2184 km s-1to 1026 km s-1 as the rising/falling time increases from 50 ns to 500 ns due to the weakening of the electric field by the surface memory effect.More intense and uniform emission can be achieved through faster rising/falling time and higher frequency based on the volume memory effect,while pulse width has less influence on the emission uniformity.Furthermore,similar laws are obtained for spectral and discharge intensity.Therefore,the memory effect is most effectively regulated by rising/falling time,and the discharge properties are affected by the surface and volume memory effect.
基金Supported by the National Natural Science Foundation of China under Grant No 51677190the Hunan Provincial Natural Science Foundation of China under Grant No 2017JJ1005
文摘Propylene carbonate (PC) has a great potential to be used as an energy storage medium in the compact pulsed power sources due to its high dielectric constant and large resistivity. We investigate both the positive and negative breakdown characteristics of PC. The streamer patterns are obtained by ultra-high-speed cameras. The experimental results show that the positive breakdown voltage of PC is about 135% higher than the negative one, which is abnormal compared with the common liquid. The shape of the positive streamer is filamentary and branchy, while the negative streamer is tree-like and less branched. According to these experimental results, a charge layer structure model at the interface between the metal electrode and liquid is presented. It is suggested that the abnormal polarity effect basically arises from the electric field strength difference in the interface between both electrodes and PC. What is more, the recombination radiation and photoionization also play an important role in the whole discharge process.
基金Supported by the National Natural Science Foundation of China(50604019)the Innovation Team Foundation of China(50621403)
文摘Mine gas extraction in China is difficult due to the characteristics such as micro-porosity,low-permeability and high adsorption of coal seams.The pulsed mechanismof a high-pressure pulsed water jet was studied through theoretical analysis,experimentand field measurement.The results show that high-pressure pulsed water jet has threedynamic properties.What's more,the three dynamic effects can be found in low-permeabilitycoal seams.A new pulsed water jet with 200-1 000 Hz oscillation frequency andpeak pressure 2.5 times than average pressure was introduced.During bubble collapsing,sound vibration and instantaneous high pressures over 100 MPa enhanced the cuttingability of the high-pressure jet.Through high-pressure pulsed water jet drilling and slotting,the exposure area of coal bodies was greatly enlarged and pressure of the coal seamsrapidly decreased.Therefore,the permeability of coal seams was improved and gas absorptionrate also decreased.Application results show that gas adsorption rate decreasedby 30%-40%and the penetrability coefficient increased 100 times.This proves that high-pressurepulsed water is more efficient than other conventional methods.
文摘For uniform tube inner coating of non-conductive thin films, the double-ended coaxial magnetron pulsed plasma (DCMPP) method was investigated. In this study, coating of TiN and TiO2 was performed. It was clearly shown that the extended anode effect was strongly influenced by the electric resistance of the coated thin films on the inner surface of an insulator tube. Additionally, high frequency (100 kHz) was better for relatively high plasma density. On the other hand, in the case of titanium oxide deposition, negative ion productions drastically decrease the deposition rate and the shifting velocity of plasma main position for coated TiO2 films.
基金Supported by the Fund of Science and Technology on Vacuum Technology and Physics Laboratory of Lanzhou Institute of Physics under Grant No YSC0715the National Natural Science Foundation of China under Grant No 62601210the Civil Aerospace Technology Research Project under Grant No D010509
文摘The effects of three different typical resistivity models(Spitzer, Z&L and M&G) on the performance of pulsed inductive acceleration plasma are studied. Numerical results show that their influences decrease with the increase of the plasma temperature. The significant discriminations among them appear at the plasma temperature lower than 2.5 eV, and the maximum gap of the pulsed inductive plasma accelerated efficiency is approximately 2.5%.Moreover, the pulsed inductive plasma accelerated efficiency is absolutely related to the dynamic impedance parameters, such as voltage, inductance, capacitance and flow rate. However, the distribution of the efficiency as a function of plasma temperature with three resistivity models has nothing to do with the dynamic impedance parameter.
基金grants from Sci-entific Research Fund of theMinistry of Health, No.20040801 Shanghai Ris-ing-Star Program of Technologi-cal Committee, No.05QMX1438
文摘BACKGROUND: The postoperative recovery of nerve function in patients with peripheral nerve injury is always an important problem to solve after treatment. The electric stimulation induced electromagnetic field can nourish nerve, postpone muscular atrophy, and help the postoperative neuromuscular function. OBJECTIVE: To observe the effects of low-frequency pulse percutaneous electric stimulation on the functional recovery of postoperative patients with peripheral nerve injury, and quantitatively evaluate the results of electromyogram (EMG) examination before and after treatment. DESIGN : A retrospective case analysis SETTING: The Sixth People's Hospital affiliated to Shanghai Jiaotong University PARTICIPANTS: Nineteen postoperative inpatients with peripheral nerve injury were selected from the De- partment of Orthopaedics, the Sixth People's Hospital affiliated to Shanghai Jiaotong University from June 2005 to January 2006, including 13 males and 6 females aged 24-62 years with an average of 36 years old. There were 3 cases of brachial plexus nerve injury, 3 of median nerve injury, 7 of radial nerve injury, 3 of ul- nar nerve injury and 3 of common peroneal nerve injury, and all the patients received probing nerve fiber restoration. Their main preoperative manifestations were dennervation, pain in limbs, motor and sensory disturbances. All the 19 patients were informed with the therapeutic program and items for evaluation. METHODS: ① Low-frequency pulse percutaneous electric stimulation apparatus: The patients were given electric stimulation with the TERESA cantata instrument (TERESA-0, Shanghai Teresa Health Technology, Co., Ltd.). The patients were stimulated with symmetric square waves of 1-111 Hz, and the intensity was 1.2-5.0 mA, and it was gradually adjusted according to the recovered conditions of neural regeneration following the principle that the intensity was strong enough and the patients felt no obvious upset. They were treated for 4- 24 weeks, 10-30 minutes for each time, 1-3 times a day, and 6 weeks as a course. ② EMG examination was applied to evaluate the recoveries of recruitment, motor conduction velocity (MCV) and sensory conduction velocity (SCV) before and after treatment. The patients were examined with the EMG apparatus (DIS- A2000C, Danmark) before and after the treatment of percutaneous electric stimulation. ③Standards for evaluating the effects included cured (complete recovery of motor functions, muscle strength of grade 5, no abnormality in EMG examination), obviously effective [general recovery of motor function, muscle strength of grade 4, no or a few denervation potentials, motor conduction velocity (MCV) and sensory conduction velocity (SCV)], improved (partial recovery of motor function, muscle strength of grade 3, denervation potentials and reinneration potentials, slowed MCV and SCV, invalid (no obvious changes of motor function). MAIN OUTCOME MEASURES: ① Ameliorated degree of the nerve function of the postoperative patients with peripheral nerve injury treated with percutaneous electric stimulation; ② Changes of EMG examination before and after treatment. RESULTS: All the 19 postoperative patients with peripheral nerve injury were involved in the analysis of results. ① Comparison of nerve function before and after treatment in 19 patients with peripheral nerve injury of different sites: For the patients with radial nerve injury (n=7), the nerve functions all completely recovered after 8-week treatment, and the cured and obvious rate was 100% (7/7); For the patients with brachial plexus nerve injury (n=3), 1 case had no obvious improvement, and the cured and obvious rate was 67% (2/3); For the patients with common peroneal nerve injury (n=3), the extension of foot dorsum generally recovered in 1 case of nerve contusion after 4-week treatment, and the cured and obvious rate was 67% (2/3); For the patients with median nerve injury (n=3), muscle strength was obviously recovered, and the cured and obvious rate was 100% (3/3); For the patients with ulnar nerve injury (n=3), 1 case only had recovery of partial senses, and the cured and obvious rate was 67% (2/3). Totally 9 cases were cured, 7 were obviously effective, 1 was improved, and only 2 were invalid. After 4 courses, the cured rate of damaged nerve function after four courses was 47% (9/19), and effective rate was 89% (17/19).② Comparison of EMG examination before and after treatment: Before and after percutaneous electric stimulation, he effective rates of recruitment, MCV and SCV were 89% (17/19), 58% (11/19), 47% (9/19) respectively, and there were extremely obvious differences (P〈 0.01). CONCLUSION: ①Low-frequency pulse percutaneous electric stimulation can improve the nerve function of postoperative patients with peripheral nerve injury of different sites, especially that the injuries of radial nerve and median nerve recover more obviously. ②Percutaneous electric stimulation can ameliorate the indexes of EMG examination, especially the recruitment, in postoperative patients with peripheral nerve injury.
基金supported by the National Basic Research Program of China(No.613224)
文摘In this paper,the nature and origin of single event effects(SEE) are studied by injecting laser pulses into different circuit blocks,combining with analysis to map pulse width modulators circuitry in the microchip die.A time-domain error-identification method is used in the temporal characteristic analysis of SEE.SEE signatures of different injection times are compared.More serious SEE are observed when the laser shot occurs on a rising edge of the device output for blocks of the error amplifier,current sense comparator,and T and SR latches.
基金supported by the National Natural Science Foundation of China under Grant No.50577028the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20050487044the China Postdoctoral Science Foundation under Grant No.20080440931
文摘The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.
基金the National Natural Science Foundation(Nos.51479051,51778209,51609075,and 51508158)the Fundamental Research Funds for the Central Universities(2016B08414)the National Key R&D Program of China(Nos.2016YFC0401610 and2016YFC0401804)
文摘To evaluate the effect of pulse parameters on the formation of electrodeposits in concrete cracks, five different types of pulse current were set up, and ZnSO_4 and MgSO_4 solutions were used as the electrolytes. The rate of weight gain, rate of surface coating, rate of crack closure and crack filling depth were measured. Scanning electron microscopy was used to assess the morphology of the electrodeposits, and energy dispersive spectroscopy was used to analyze the mineral composition of the electrodeposits in the cracks. The experimental results demonstrate that, among five different pulse parameters, when T_(on)/T_(off)=0.8 ms/0.8 ms, the healing effect of electro-deposition is the best. The pulse mode hardly affects the mineral composition of the electrodeposits but changes the micromorphology. In addition, for both ZnSO_4 and MgSO_4 solutions, when T_(on)/T_(off)=0.8 ms/0.8 ms, the crystal structure of the electrodeposits is the most uniform and the densest.
文摘The spontaneous radiation from a single pulse electron beam in Free Electron Lasers is dealt withby solving one-dimensional wave equations.The obtained results show that there is the long pulse effect aswell as the well-known short pulse effect.