The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting.To better identify the origin and evolution of coal seam water and its impact on gas ...The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting.To better identify the origin and evolution of coal seam water and its impact on gas storage and production,this study collected coalbed methane co-produced water in the southeast Qinshui Basin and detected chemical and isotopic compositions,especially 36Cl and 129I concentrations.The calculated tracer ages of 129I(5.2–50.6 Ma)and 36Cl(0.13–0.76 Ma)are significantly younger than the age of coal-bearing formation(Pennsylvanian-Cisuralian),indicating freshwater recharge after coal deposition.The model that utilises 129I/I and 36Cl/Cl ratios to constrain the timing of recharge and the proportion of recharge water reveals that over 60%of pre-anthropogenic meteoric water entered coal seams since 10 Ma and mixed with residue initial deposition water,corresponding to the basin inversion in Cenozoic.The spatial distribution of major ion concentrations reveals the primary recharge pathway for meteoric water from coal outcrops at the eastern margin to the basin center.This study demonstrates the occurrence of higher gas production rates from wells that accept water recharge in recent times and suggests the possible potential of the non-stagnant zones for high gas production.展开更多
To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research ...To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research was based on land use/land cover(LULC),natural,socioeconomic,and accessibility data,utilizing the Patch-level Land Use Simulation(PLUS)and Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)models to dynamically assess LULC change and associated variations in water yield and water conservation.The analyses included the evaluation of contribution indices of various land use types and the investigation of driving factors that influence water yield and water conservation.The results showed that the change of LULC in the Bosten Lake Basin from 2000 to 2020 showed a trend of increasing in cultivated land and construction land,and decreasing in grassland,forest,and unused land.The unused land of all the three predicted scenarios of 2030(S1,a natural development scenario;S2,an ecological protection scenario;and S3,a cultivated land protection scenario)showed a decreasing trend.The scenarios S1 and S3 showed a trend of decreasing in grassland and increasing in cultivated land;while the scenario S2 showed a trend of decreasing in cultivated land and increasing in grassland.The water yield of the Bosten Lake Basin exhibited an initial decline followed by a slight increase from 2000 to 2020.The areas with higher water yield values were primarily located in the northern section of the basin,which is characterized by higher altitude.Water conservation demonstrated a pattern of initial decrease followed by stabilization,with the northeastern region demonstrating higher water conservation values.In the projected LULC scenarios of 2030,the estimated water yield under scenarios S1 and S3 was marginally greater than that under scenario S2;while the level of water conservation across all three scenarios remained rather consistent.The results showed that Hejing County is an important water conservation function zone,and the eastern part of the Xiaoyouledusi Basin is particularly important and should be protected.The findings of this study offer a scientific foundation for advancing sustainable development in arid watersheds and facilitating efficient water resource management.展开更多
Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its i...Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its influencing factors remains further study.In this study,for better investigating the pattern and heterogeneity of virtual water trade inside and outside provincial regions along the Yellow River Basin in 2015 using the input-output model(MRIO),we proposed two new concepts,i.e.,virtual water surplus and virtual water deficit,and then used the Logarithmic Mean Divisia Index(LMDI)model to identify the inherent mechanism of the imbalance of virtual water trade between provincial regions along the Yellow River Basin and the other four regions in China.The results show that:1)in provincial regions along the Yellow River Basin,the less developed the economy was,the larger the contribution of the agricultural sector in virtual water trade,while the smaller the contribution of the industrial sector.2)Due to the large output of agricultural products,the upstream and midstream provincial regions of the Yellow River Basin had a virtual water surplus,with a net outflow of virtual water of 2.7×10^(8) m^(3) and 0.9×10^(8) m^(3),respectively.3)provincial regions along the Yellow River Basin were in a virtual water deficit with the rest of China,and the decisive factor was the active degree of trade with the outside.This study would be beneficial to illuminate the trade-related water use issues in provincial regions along the Yellow River Basin,which has farreaching practical signific-ance for alleviating water scarcity.展开更多
Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteri...Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteria which choice is not straightforward. This paper aims to evaluate the influence of the performance criteria on water balance components and water extremes using two global rainfall-runoff models (HBV and GR4J) over the Ouémé watershed at the Bonou and Savè outlets. Three (3) Efficacy criteria (Nash, coefficient of determination, and KGE) were considered for calibration and validation. The results show that the Nash criterion provides a good assessment of the simulation of the different parts of the hydrograph. KGE is better for simulating peak flows and water balance elements than other efficiency criteria. This study could serve as a basis for the choice of performance criteria in hydrological modelling.展开更多
The Lhasa River Basin forms an essential human settlement area in the southern part of the Qinghai-Tibet Plateau.This study employed ecosystem service value(ESV)evaluation model,terrain gradient grading,and Geodetecto...The Lhasa River Basin forms an essential human settlement area in the southern part of the Qinghai-Tibet Plateau.This study employed ecosystem service value(ESV)evaluation model,terrain gradient grading,and Geodetector to analyze land use and ESV in the Lhasa River Basin from 1985 to 2020.The findings reveal that:(1)From 1985 to 2020,grassland was the dominant land use.There was a trend of grassland reduction and the expansion of other land types.(2)ESV has increased over the research period(with a total increase of 0.84%),with higher values in the southeast and lower values in the northwest.Grassland contributed the most to ESV,and climate regulation and hydrological regulation were the ecosystem services that contribute the most to ESV.(3)Natural factors like NDVI and altitude,as well as economic factors like population density and distance from roads,influenced the spatial differentiation of ESV,the explanatory power of NDVI reached up to 0.47.The interaction between factors had a greater impact than individual factors.These research results can provide theoretical support for national spatial planning and ecological environment protection in the Lhasa River Basin and other similar areas.展开更多
To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a...To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.展开更多
This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The ...This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region.展开更多
Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine suc...Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.展开更多
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t...The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.展开更多
The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to r...The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research.展开更多
Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Prov...Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.展开更多
Understanding the impact of climate change on water resources is important for developing regional adaptive water management strategies. This study investigated the impact of climate change on water resources in the Y...Understanding the impact of climate change on water resources is important for developing regional adaptive water management strategies. This study investigated the impact of climate change on water resources in the Yarmouk River Basin(YRB) of Jordan by analyzing the historical trends and future projections of temperature, precipitation, and streamflow. Simple linear regression was used to analyze temperature and precipitation trends from 1989 to 2017 at Irbid, Mafraq, and Samar stations. The Statistical Downscaling Model(SDSM) was applied to predict changes in temperature and precipitation from 2018 to 2100 under three Representative Concentration Pathway(RCP) scenarios(i.e., RCP2.6, RCP4.5, and RCP8.5), and the Soil and Water Assessment Tool(SWAT) was utilized to estimate their potential impact on streamflow at Addasiyia station. Analysis of data from 1989 to 2017 revealed that mean maximum and minimum temperatures increased at all stations, with average rises of 1.62℃ and 1.39℃, respectively. The precipitation trends varied across all stations, showing a significant increase at Mafraq station, an insignificant increase at Irbid station, and an insignificant decrease at Samar station. Historical analysis of streamflow data revealed a decreasing trend with a slope of –0.168. Significant increases in both mean minimum and mean maximum temperatures across all stations suggested that evaporation is the dominant process within the basin, leading to reduced streamflow. Under the RCP scenarios, projections indicated that mean maximum temperatures will increase by 0.32℃ to 1.52℃, while precipitation will decrease by 8.5% to 43.0% throughout the 21st century. Future streamflow projections indicated reductions in streamflow ranging from 8.7% to 84.8% over the same period. The mathematical model results showed a 39.4% reduction in streamflow by 2050, nearly double the SWAT model's estimate under RCP8.5 scenario. This research provides novel insights into the regional impact of climate change on water resources, emphasizing the urgent need to address these environmental challenges to ensure a sustainable water supply in Jordan.展开更多
Water scarcity has become a pressing global issue, worsening food security, hindering economic development, compromising environmental quality, and threatening human health and other fundamental societal needs. Viet N...Water scarcity has become a pressing global issue, worsening food security, hindering economic development, compromising environmental quality, and threatening human health and other fundamental societal needs. Viet Nam is among the countries severely affected by water scarcity. This study comprehensively assesses the extent and scale of water scarcity in the Srepok River Basin, considering the impacts of water resource allocation, balance, and environmental flows. The areas heavily affected by water scarcity include Ea Hleo, Ea Krong Ana, and several Srepok River branches, with water scarcity periods mainly concentrated in February, March, and April. The influence of climate change has increased the extent and level of water scarcity in the river, affecting an estimated 1.4 million people for at least one month and about 1 million for at least three months. The agricultural sector is significantly affected by water scarcity, with water shortages of 50% according to the baseline scenario and over 60% according to climate change scenarios.展开更多
Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater...Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China.展开更多
The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive un...The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive understanding of the spatiotemporal evolution of water conservation function and its driving factors remains incomplete in this basin.In this study,we utilized the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to examine the spatiotemporal evolution of water conservation function in the Huangshui River Basin from 2000 to 2020.Additionally,we employed the random forest model,Pearson correlation analysis,and geographical detector(Geodetector)techniques to investigate the primary factors and factor interactions affecting the spatial differentiation of water conservation function.The findings revealed several key points.First,the high-latitude northern region of the study area experienced a significant increase in water conservation over the 21-a period.Second,the Grain for Green project has played a substantial role in improving water conservation function.Third,precipitation,plant available water content(PAWC),grassland,gross domestic product(GDP),and forest land were primary factors influencing the water conservation function.Finally,the spatial differentiation of water conservation function was determined by the interactions among geographical conditions,climatic factors,vegetation biophysical factors,and socio-economic factors.The findings have significant implications for advancing ecological protection and restoration initiatives,enhancing regional water supply capabilities,and safeguarding ecosystem health and stability in the Huangshui River Basin.展开更多
In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples a...In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.展开更多
[Objective] To study the purification effect of plant community on wetland water environment in Hongze Lake, and to provide references to the ecological restoration of this area. [Methed] The typical lakeside zone of ...[Objective] To study the purification effect of plant community on wetland water environment in Hongze Lake, and to provide references to the ecological restoration of this area. [Methed] The typical lakeside zone of Hongze Lake Wetland National Nature Reserve was taken as the study area. Through the field survey based on environmental characteristics of aquatic areas and non-aquatic areas, combined with laboratory test, the content changes of nutrients (N and P), COD (chemical oxygen demand) and SD (transparency) levels in the water body of lake wetland were measured; the purification effect of the lake wetland ecosystem in the growth process of aquatic vegetation was quantitatively analyzed, and possible influ- encing factors were discussed. [Result] Aquatic vegetation could remove the TN, TP, COD, Chla in wetland water environment and had obvious effects on the changes of SD content. Competition between aquatic plants can inhibit the growth of algae and relieve the eutrophication of water body. [Conclusion] This study provided theoretical basis for ecological restoration and enhancement of self-purification capability in the lakeside zone of Hongze Lake.展开更多
To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and ...To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation.展开更多
Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater o...Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater observation wells were constructed in experimental plot of the Daxia irrigated area to carry out the experiment of the effect of irrigation on groundwater dynamic change in this research. The results showed that the groundwater stage dynarnic change rule of spring and seedling irri- gation stage in the typical plot was fit to the hydrological geology condition of grade- I terrace of Huangshui river valley. On the whole, lateral canal water direction formed a line effect. The No. 1 and No. 2 observation well were the closest to the lateral canal, which received more supplies, and the water level was the highest; the No, 3 observation well took the second place; The No. 4 and No. 5 observation well accepted least supplies, and the water level was the lowest. The rangeability of water table of spring irrigation period was significantly higher than that of seedling irrigation period, this is mainly due to the difference value of intake water volume and drainage water volume of spring irrigation phase was significantly higher than the seedling irrigation phase.展开更多
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金supported by the National Natural Science Foundation of China(Grant Nos.42150710532 and 42103048).
文摘The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting.To better identify the origin and evolution of coal seam water and its impact on gas storage and production,this study collected coalbed methane co-produced water in the southeast Qinshui Basin and detected chemical and isotopic compositions,especially 36Cl and 129I concentrations.The calculated tracer ages of 129I(5.2–50.6 Ma)and 36Cl(0.13–0.76 Ma)are significantly younger than the age of coal-bearing formation(Pennsylvanian-Cisuralian),indicating freshwater recharge after coal deposition.The model that utilises 129I/I and 36Cl/Cl ratios to constrain the timing of recharge and the proportion of recharge water reveals that over 60%of pre-anthropogenic meteoric water entered coal seams since 10 Ma and mixed with residue initial deposition water,corresponding to the basin inversion in Cenozoic.The spatial distribution of major ion concentrations reveals the primary recharge pathway for meteoric water from coal outcrops at the eastern margin to the basin center.This study demonstrates the occurrence of higher gas production rates from wells that accept water recharge in recent times and suggests the possible potential of the non-stagnant zones for high gas production.
基金This research was supported by the Special Project for the Construction of Innovation Environment in the Autonomous Region(2022D04007)the National Natural Science Foundation of China(42361030).
文摘To comprehensively evaluate the alterations in water ecosystem service functions within arid watersheds,this study focused on the Bosten Lake Basin,which is situated in the arid region of Northwest China.The research was based on land use/land cover(LULC),natural,socioeconomic,and accessibility data,utilizing the Patch-level Land Use Simulation(PLUS)and Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)models to dynamically assess LULC change and associated variations in water yield and water conservation.The analyses included the evaluation of contribution indices of various land use types and the investigation of driving factors that influence water yield and water conservation.The results showed that the change of LULC in the Bosten Lake Basin from 2000 to 2020 showed a trend of increasing in cultivated land and construction land,and decreasing in grassland,forest,and unused land.The unused land of all the three predicted scenarios of 2030(S1,a natural development scenario;S2,an ecological protection scenario;and S3,a cultivated land protection scenario)showed a decreasing trend.The scenarios S1 and S3 showed a trend of decreasing in grassland and increasing in cultivated land;while the scenario S2 showed a trend of decreasing in cultivated land and increasing in grassland.The water yield of the Bosten Lake Basin exhibited an initial decline followed by a slight increase from 2000 to 2020.The areas with higher water yield values were primarily located in the northern section of the basin,which is characterized by higher altitude.Water conservation demonstrated a pattern of initial decrease followed by stabilization,with the northeastern region demonstrating higher water conservation values.In the projected LULC scenarios of 2030,the estimated water yield under scenarios S1 and S3 was marginally greater than that under scenario S2;while the level of water conservation across all three scenarios remained rather consistent.The results showed that Hejing County is an important water conservation function zone,and the eastern part of the Xiaoyouledusi Basin is particularly important and should be protected.The findings of this study offer a scientific foundation for advancing sustainable development in arid watersheds and facilitating efficient water resource management.
基金Under the auspices of National Natural Science Foundation of China(No.42201302)‘Double First-Class’University Construction Project of Lanzhou University(No.561120213)。
文摘Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its influencing factors remains further study.In this study,for better investigating the pattern and heterogeneity of virtual water trade inside and outside provincial regions along the Yellow River Basin in 2015 using the input-output model(MRIO),we proposed two new concepts,i.e.,virtual water surplus and virtual water deficit,and then used the Logarithmic Mean Divisia Index(LMDI)model to identify the inherent mechanism of the imbalance of virtual water trade between provincial regions along the Yellow River Basin and the other four regions in China.The results show that:1)in provincial regions along the Yellow River Basin,the less developed the economy was,the larger the contribution of the agricultural sector in virtual water trade,while the smaller the contribution of the industrial sector.2)Due to the large output of agricultural products,the upstream and midstream provincial regions of the Yellow River Basin had a virtual water surplus,with a net outflow of virtual water of 2.7×10^(8) m^(3) and 0.9×10^(8) m^(3),respectively.3)provincial regions along the Yellow River Basin were in a virtual water deficit with the rest of China,and the decisive factor was the active degree of trade with the outside.This study would be beneficial to illuminate the trade-related water use issues in provincial regions along the Yellow River Basin,which has farreaching practical signific-ance for alleviating water scarcity.
文摘Hydrological models are very useful tools for evaluating water resources, and the hydroclimatic hazards associated with the water cycle. However, their calibration and validation require the use of performance criteria which choice is not straightforward. This paper aims to evaluate the influence of the performance criteria on water balance components and water extremes using two global rainfall-runoff models (HBV and GR4J) over the Ouémé watershed at the Bonou and Savè outlets. Three (3) Efficacy criteria (Nash, coefficient of determination, and KGE) were considered for calibration and validation. The results show that the Nash criterion provides a good assessment of the simulation of the different parts of the hydrograph. KGE is better for simulating peak flows and water balance elements than other efficiency criteria. This study could serve as a basis for the choice of performance criteria in hydrological modelling.
基金supported by the National Natural Science Foundation of China(Grant No.U20A20112)Construction of Talent Innovation Team and Laboratory Platform of Tibet University-Construction of Plateau Geothermal New Energy Innovation Team and Laboratory Platform(Grant No.2022ZDTD10)Central Support for Local Ministry and Regional Joint Construction/First-class Everest Construction Project-Construction of Geological Resources and Geological Engineering Characteristics(Grant No.Tibetan Finance Pre-indication[2022]No.1).
文摘The Lhasa River Basin forms an essential human settlement area in the southern part of the Qinghai-Tibet Plateau.This study employed ecosystem service value(ESV)evaluation model,terrain gradient grading,and Geodetector to analyze land use and ESV in the Lhasa River Basin from 1985 to 2020.The findings reveal that:(1)From 1985 to 2020,grassland was the dominant land use.There was a trend of grassland reduction and the expansion of other land types.(2)ESV has increased over the research period(with a total increase of 0.84%),with higher values in the southeast and lower values in the northwest.Grassland contributed the most to ESV,and climate regulation and hydrological regulation were the ecosystem services that contribute the most to ESV.(3)Natural factors like NDVI and altitude,as well as economic factors like population density and distance from roads,influenced the spatial differentiation of ESV,the explanatory power of NDVI reached up to 0.47.The interaction between factors had a greater impact than individual factors.These research results can provide theoretical support for national spatial planning and ecological environment protection in the Lhasa River Basin and other similar areas.
基金supported by the Major Science and Technology Project(Nos.CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ,KJGG2021-0505) of CNOOC Co.,Ltd.of Chinathe National Natural Science Foundation of China(No.42002171)+2 种基金China Postdoctoral Science Foundation(Nos.2020TQ0299,2020M682520)Postdoctoral Innovation Science Foundation of Hubei Province of ChinaScientific Research Project of Zhanjiang Branch of CNOOC(No.ZYKY-2022-ZJ-02)。
文摘To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.
基金supported by The Second Tibetan Plateau Scientific Expedition and Research(STEP)program(2019QZKK0105)the National Natural Science Foundation of China(91437221,91837204).
文摘This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region.
文摘Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.
基金supported by the National Natural Science Foundation of China(Grant Nos.42027806 and 42041006)。
文摘The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.
基金National Natural Science Foundation of China (42041004)。
文摘The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research.
基金jointly supported by the National Natural Science Foundation of China(41702280)the projects of the China Geology Survey(DD20221754 and DD20190333)。
文摘Extensive land use will cause many environmental problems.It is an urgent task to improve land use efficiency and optimize land use patterns.In recent years,due to the flow decrease,the Guanzhong Basin in Shaanxi Province is confronted with the problem of insufficient water resources reserve.Based on the Coupled Ground-Water and Surface-Water Flow Model(GSFLOW),this paper evaluates the response of water resources in the basin to changes in land use patterns,optimizes the land use pattern,improves the ecological and economic benefits,and the efficiency of various spatial development,providing a reference for ecological protection and high-quality development of the Yellow River Basin.The research shows that the land use pattern in the Guanzhong Basin should be further optimized.Under the condition of considering ecological and economic development,the percentage change of the optimum area of farmland,forest,grassland,water area,and urban area compared with the current land use area ratio is+2.3,+2.4,-6.1,+0.2,and+1.6,respectively.The economic and ecological value of land increases by14.1%and 3.1%,respectively,and the number of water resources can increase by 2.5%.
文摘Understanding the impact of climate change on water resources is important for developing regional adaptive water management strategies. This study investigated the impact of climate change on water resources in the Yarmouk River Basin(YRB) of Jordan by analyzing the historical trends and future projections of temperature, precipitation, and streamflow. Simple linear regression was used to analyze temperature and precipitation trends from 1989 to 2017 at Irbid, Mafraq, and Samar stations. The Statistical Downscaling Model(SDSM) was applied to predict changes in temperature and precipitation from 2018 to 2100 under three Representative Concentration Pathway(RCP) scenarios(i.e., RCP2.6, RCP4.5, and RCP8.5), and the Soil and Water Assessment Tool(SWAT) was utilized to estimate their potential impact on streamflow at Addasiyia station. Analysis of data from 1989 to 2017 revealed that mean maximum and minimum temperatures increased at all stations, with average rises of 1.62℃ and 1.39℃, respectively. The precipitation trends varied across all stations, showing a significant increase at Mafraq station, an insignificant increase at Irbid station, and an insignificant decrease at Samar station. Historical analysis of streamflow data revealed a decreasing trend with a slope of –0.168. Significant increases in both mean minimum and mean maximum temperatures across all stations suggested that evaporation is the dominant process within the basin, leading to reduced streamflow. Under the RCP scenarios, projections indicated that mean maximum temperatures will increase by 0.32℃ to 1.52℃, while precipitation will decrease by 8.5% to 43.0% throughout the 21st century. Future streamflow projections indicated reductions in streamflow ranging from 8.7% to 84.8% over the same period. The mathematical model results showed a 39.4% reduction in streamflow by 2050, nearly double the SWAT model's estimate under RCP8.5 scenario. This research provides novel insights into the regional impact of climate change on water resources, emphasizing the urgent need to address these environmental challenges to ensure a sustainable water supply in Jordan.
文摘Water scarcity has become a pressing global issue, worsening food security, hindering economic development, compromising environmental quality, and threatening human health and other fundamental societal needs. Viet Nam is among the countries severely affected by water scarcity. This study comprehensively assesses the extent and scale of water scarcity in the Srepok River Basin, considering the impacts of water resource allocation, balance, and environmental flows. The areas heavily affected by water scarcity include Ea Hleo, Ea Krong Ana, and several Srepok River branches, with water scarcity periods mainly concentrated in February, March, and April. The influence of climate change has increased the extent and level of water scarcity in the river, affecting an estimated 1.4 million people for at least one month and about 1 million for at least three months. The agricultural sector is significantly affected by water scarcity, with water shortages of 50% according to the baseline scenario and over 60% according to climate change scenarios.
基金This work was funded by the Science and Technology Program of Gansu Province(23ZDFA017,22ZD6FA005)the Third Xinjiang Scientific Expedition Program(2022xjkk0802).
文摘Characterization of the spatial and temporal variability of stable isotopes in surface water is essential for interpreting hydrological processes.In this study,we collected the water samples of river water,groundwater,and reservoir water in the Burqin River Basin of the Altay Mountains,China in 2021,and characterized the oxygen and hydrogen isotope variations in different water bodies via instrumental analytics and modeling.Results showed significant seasonal variations in stable isotope ratios of oxygen and hydrogen(δ18O andδ2H,respectively)and significant differences inδ18O andδ2H among different water bodies.Higherδ18O andδ2H values were mainly found in river water,while groundwater and reservoir water had lower isotope ratios.River water and groundwater showed differentδ18O-δ2H relationships with the local meteoric water line,implying that river water and groundwater are controlled by evaporative enrichment and multi-source recharge processes.The evaporative enrichment experienced by reservoir water was less significant and largely influenced by topography,recharge sources,local moisture cycling,and anthropogenic factors.Higher deuterium excess(d-excess)value of 14.34‰for river water probably represented the isotopic signature of combined contributions from direct precipitation,snow and glacial meltwater,and groundwater recharge.The average annual d-excess values of groundwater(10.60‰)and reservoir water(11.49‰)were similar to the value of global precipitation(10.00‰).The findings contribute to understanding the hydroclimatic information reflected in the month-by-month variations in stable isotopes in different water bodies and provide a reference for the study of hydrological processes and climate change in the Altay Mountains,China.
基金funded by the National Key R&D Program of China(2023YFC3008502)the National Natural Science Foundation of China(52309103)+2 种基金the Major Science and Technology Programs of the Ministry of Water Resources(MWR)(SKS-2022002)the Chengde Applied Technology Research and Development and Sustainable Development Agenda Innovation Demonstration Zone Special Science and Technology Plan Project(202305B009)the Qinghai Province Applied Basic Research Program(2024-ZJ-773).
文摘The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive understanding of the spatiotemporal evolution of water conservation function and its driving factors remains incomplete in this basin.In this study,we utilized the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to examine the spatiotemporal evolution of water conservation function in the Huangshui River Basin from 2000 to 2020.Additionally,we employed the random forest model,Pearson correlation analysis,and geographical detector(Geodetector)techniques to investigate the primary factors and factor interactions affecting the spatial differentiation of water conservation function.The findings revealed several key points.First,the high-latitude northern region of the study area experienced a significant increase in water conservation over the 21-a period.Second,the Grain for Green project has played a substantial role in improving water conservation function.Third,precipitation,plant available water content(PAWC),grassland,gross domestic product(GDP),and forest land were primary factors influencing the water conservation function.Finally,the spatial differentiation of water conservation function was determined by the interactions among geographical conditions,climatic factors,vegetation biophysical factors,and socio-economic factors.The findings have significant implications for advancing ecological protection and restoration initiatives,enhancing regional water supply capabilities,and safeguarding ecosystem health and stability in the Huangshui River Basin.
文摘In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.
基金Supported by the Social Development Project of Jiangsu Provincial Science and Technology Department(BK2010023)江苏省科技厅社会发展项目(BK2010023)资助
文摘[Objective] To study the purification effect of plant community on wetland water environment in Hongze Lake, and to provide references to the ecological restoration of this area. [Methed] The typical lakeside zone of Hongze Lake Wetland National Nature Reserve was taken as the study area. Through the field survey based on environmental characteristics of aquatic areas and non-aquatic areas, combined with laboratory test, the content changes of nutrients (N and P), COD (chemical oxygen demand) and SD (transparency) levels in the water body of lake wetland were measured; the purification effect of the lake wetland ecosystem in the growth process of aquatic vegetation was quantitatively analyzed, and possible influ- encing factors were discussed. [Result] Aquatic vegetation could remove the TN, TP, COD, Chla in wetland water environment and had obvious effects on the changes of SD content. Competition between aquatic plants can inhibit the growth of algae and relieve the eutrophication of water body. [Conclusion] This study provided theoretical basis for ecological restoration and enhancement of self-purification capability in the lakeside zone of Hongze Lake.
基金The financial support from the National Natural Science Foun-dation of China(Grant Nos.52074299 and 41941018)the Fundamental Research Funds for the Central Universities of China(Grant No.2023JCCXSB02)are gratefully acknowledged.
文摘To investigate the mechanism of rockburst prevention by spraying water onto the surrounding rocks,15 experiments are performed considering different water absorption levels on a single face.High-speed photography and acoustic emission(AE)system are used to monitor the rockburst process.The effect of water on sandstone rockburst and the prevention mechanism of water on sandstone rockburst are analyzed from the perspective of energy and failure mode.The results show that the higher the ab-sorption degree,the lower the intensity of the rockburst after absorbing water on single side of sand-stone.This is reflected in the fact that with the increase in the water absorption level,the ejection velocity of rockburst fragments is smaller,the depth of the rockburst pit is shallower,and the AE energy is smaller.Under the water absorption level of 100%,the magnitude of rockburst intensity changes from medium to slight.The prevention mechanism of water on sandstone rockburst is that water reduces the capacity of sandstone to store strain energy and accelerates the expansion of shear cracks,which is not conducive to the occurrence of plate cracking before rockburst,and destroys the conditions for rockburst incubation.
基金Supported by Water Consumption Coefficient Research in Irrigated Area in the Yellow River Areas in Qinghai Province(QX2012-019)
文摘Under the influence of the natural and human factors, water table of irri- gated area Changes frequently, but it is mainly affected by irrigation water infiltration replenishment during the irrigation. 5 groundwater observation wells were constructed in experimental plot of the Daxia irrigated area to carry out the experiment of the effect of irrigation on groundwater dynamic change in this research. The results showed that the groundwater stage dynarnic change rule of spring and seedling irri- gation stage in the typical plot was fit to the hydrological geology condition of grade- I terrace of Huangshui river valley. On the whole, lateral canal water direction formed a line effect. The No. 1 and No. 2 observation well were the closest to the lateral canal, which received more supplies, and the water level was the highest; the No, 3 observation well took the second place; The No. 4 and No. 5 observation well accepted least supplies, and the water level was the lowest. The rangeability of water table of spring irrigation period was significantly higher than that of seedling irrigation period, this is mainly due to the difference value of intake water volume and drainage water volume of spring irrigation phase was significantly higher than the seedling irrigation phase.