An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key fe...An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key feature of this new approach is that it can describe the finite deformation of crystals under thermal conditions. The obtained plastic deformation gradient contains not only plastic defor- mation but also thermal effects. The governing equation for the plastic deformation gradient is obtained based on ther- mal multiplicative decomposition of the total deformation gradient. An implicit method is used to integrate this evo- lution equation to ensure stability. Single crystal 1 100 aluminum is investigated to demonstrate practical applications of the model. The effects of anisotropic properties, time step, strain rate and temperature are calculated using this integration model.展开更多
Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain M...Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.展开更多
In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under so...In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed.展开更多
In this paper, we apply stochastic Galerkin finite element methods to the optimal control problem governed by an elliptic integral-differential PDEs with random field. The control problem has the control constraints o...In this paper, we apply stochastic Galerkin finite element methods to the optimal control problem governed by an elliptic integral-differential PDEs with random field. The control problem has the control constraints of obstacle type. A new gradient algorithm based on the pre-conditioner conjugate gradient algorithm (PCG) is developed for this optimal control problem. This algorithm can transform a part of the state equation matrix and co-state equation matrix into block diagonal matrix and then solve the optimal control systems iteratively. The proof of convergence for this algorithm is also discussed. Finally numerical examples of a medial size are presented to illustrate our theoretical results.展开更多
Multilevel (hierarchical) modeling is a generalization of linear and generalized linear modeling in which regression coefficients are modeled through a model, whose parameters are also estimated from data. Multileve...Multilevel (hierarchical) modeling is a generalization of linear and generalized linear modeling in which regression coefficients are modeled through a model, whose parameters are also estimated from data. Multilevel model fails to fit well typically by the use of the EM algorithm once one of level error variance (like Cauchy distribution) tends to infinity. This paper proposes a composite multilevel to combine the nested structure of multilevel data and the robustness of the composite quantile regression, which greatly improves the efficiency and precision of the estimation. The new approach, which is based on the Gauss-Seidel iteration and takes a full advantage of the composite quantile regression and multilevel models, still works well when the error variance tends to infinity, We show that even the error distribution is normal, the MSE of the estimation of composite multilevel quantile regression models nearly equals to mean regression. When the error distribution is not normal, our method still enjoys great advantages in terms of estimation efficiency.展开更多
基金supported by the Key Project of the National Natural Science Foundation of China(10932003)Project of Chinese National Programs for Fundamental Research and Development(2012CB619603 and 2010CB832700)"04" Great Project of Ministry of Industrialization and Information of China (2011ZX04001-21)
文摘An algorithm for integrating the constitutive equations in thermal framework is presented, in which the plastic deformation gradient is chosen as the integration variable. Compared with the classic algorithm, a key feature of this new approach is that it can describe the finite deformation of crystals under thermal conditions. The obtained plastic deformation gradient contains not only plastic defor- mation but also thermal effects. The governing equation for the plastic deformation gradient is obtained based on ther- mal multiplicative decomposition of the total deformation gradient. An implicit method is used to integrate this evo- lution equation to ensure stability. Single crystal 1 100 aluminum is investigated to demonstrate practical applications of the model. The effects of anisotropic properties, time step, strain rate and temperature are calculated using this integration model.
基金the sponsorship of the National Basic Research Program of China (973 Program,2013CB228604,2014CB239201)the National Oil and Gas Major Projects of China (2011ZX05014-001-010HZ,2011ZX05014-001-006-XY570) for their funding of this research
文摘Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.
基金the Natural Science Foundation of China(10371042,10671038)
文摘In this article, robust generalized estimating equation for the analysis of partial linear mixed model for longitudinal data is used. The authors approximate the nonparametric function by a regression spline. Under some regular conditions, the asymptotic properties of the estimators are obtained. To avoid the computation of high-dimensional integral, a robust Monte Carlo Newton-Raphson algorithm is used. Some simulations are carried out to study the performance of the proposed robust estimators. In addition, the authors also study the robustness and the efficiency of the proposed estimators by simulation. Finally, two real longitudinal data sets are analyzed.
基金This work was supported by National Natural Science Foundation of China (No. 11501326).
文摘In this paper, we apply stochastic Galerkin finite element methods to the optimal control problem governed by an elliptic integral-differential PDEs with random field. The control problem has the control constraints of obstacle type. A new gradient algorithm based on the pre-conditioner conjugate gradient algorithm (PCG) is developed for this optimal control problem. This algorithm can transform a part of the state equation matrix and co-state equation matrix into block diagonal matrix and then solve the optimal control systems iteratively. The proof of convergence for this algorithm is also discussed. Finally numerical examples of a medial size are presented to illustrate our theoretical results.
基金The work was partially supported by Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(No.10XNL018)
文摘Multilevel (hierarchical) modeling is a generalization of linear and generalized linear modeling in which regression coefficients are modeled through a model, whose parameters are also estimated from data. Multilevel model fails to fit well typically by the use of the EM algorithm once one of level error variance (like Cauchy distribution) tends to infinity. This paper proposes a composite multilevel to combine the nested structure of multilevel data and the robustness of the composite quantile regression, which greatly improves the efficiency and precision of the estimation. The new approach, which is based on the Gauss-Seidel iteration and takes a full advantage of the composite quantile regression and multilevel models, still works well when the error variance tends to infinity, We show that even the error distribution is normal, the MSE of the estimation of composite multilevel quantile regression models nearly equals to mean regression. When the error distribution is not normal, our method still enjoys great advantages in terms of estimation efficiency.