The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related ...The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related to the position of the light source and the detector. It can be used to evaluate the effective detection depth. The sensitivity matrix is defined as the multiplication of the source and detector hght distribution. Six different groups about ix parameters including the source diameter and detector fibers, the core-to-core distance between the source and detector fibers, the opotode depth, the absorption, and reduced scattering coefficient, are used as experimental models. The relationship between the six parameters and the effective detection depth is analyzed. Resuits can be used to study the spatial resolution and the depth of multi-fibers.展开更多
In this paper, the approximate equation of Chapman's (real) effective depth for Pekeris guide is extended to the complex effective depth approximation whose real and imaginary parts explicate respectively the phas...In this paper, the approximate equation of Chapman's (real) effective depth for Pekeris guide is extended to the complex effective depth approximation whose real and imaginary parts explicate respectively the phase change and energy loss on reflection. It is shown that the homogeneous acoustic field, which comprises the complex effective depth approximation,closely reproduces the character of low modes at small grazing angles, and calculates effectively the acoustic field at longer ranges in shallow water. Application of the complex effective depth approximation can be extended to bottoms having two soft solid layers.展开更多
A coupled-mode sound propagation model with complex effective depth is presented,in order to involve the effect of branch line integral for acoustic field in a range-dependent waveguide.The equations of motion and con...A coupled-mode sound propagation model with complex effective depth is presented,in order to involve the effect of branch line integral for acoustic field in a range-dependent waveguide.The equations of motion and continuity are used to obtain the coupled equations,which satisfy boundary conditions in the waveguide with varying topography and contain one coupling matrix.Meanwhile,the couplings between discrete and continuous spectrum are dealt with based on complex effective depth theory.Numerical simulations show that the accuracy of transmission loss is improved by the coupled mode model when eigenvalues of trapped modes are located near the branch point.The acoustic field in a non-horizontally stratified waveguide can be calculated efficiently and accurately by this model,and the energy corresponding to trapped modes,leaky modes and branch line integral can be considered adequately.展开更多
In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is...In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is adopted to distinguish the surface vessel and the underwater target. According to the effective depth of a Pekeris waveguide, the placing depth forecasting equations of passive vertical double vector hydrophones are proposed. Numerical examples show that when the sum of depths of two hydro- phones is the effective depth, the sign distribution of ACCSPPHV has nothing to do with horizontal distance; in addition, the sum of the first critical surface and the second critical surface is equal to the effective depth. By setting the first critical surface less than the difference between the effective water depth and the actual water depth, that is, the second critical surface is greater than the actual depth, the three positive and negative regions of the whole ocean volume are equivalent to two positive and negative regions and therefore the depth classification of the underwater target is obtained. Besides, when the 20 m water depth is taken as the first critical surface in the simulation of underwater targets (40 Hz, 50 Hz, and 60 Hz respectively), the effectiveness of the algorithm and the cor- reemess of relevant conclusions are verified, and the analysis of the corresponding forecasting performance is conducted.展开更多
Significant changes of geological and hydraulic behaviors of rock mass with depth was studied. The general regulation and the critical depth of qualitative change of rock mass geological and hydraulic changes with dep...Significant changes of geological and hydraulic behaviors of rock mass with depth was studied. The general regulation and the critical depth of qualitative change of rock mass geological and hydraulic changes with depth were studied. Preliminary research show that the mechanical properties of rock mass gradually change from solid to plastic with the increasing of its buried depth. The critical depth of this tendency was controlled by geological properties of rock mass and its overlying rock. The critical depths are different in different regions because of its different geological condition. The general change depth of rock mass from rigid property to plastic property in coal mine regions of North China is about 1 800-2 300 m. The hydraulic permeability of rock mass will change significantly with depth because of the geological and hydraulic mechanics changes from solid to plastic and the groundwater circulation condition in karst and fractured aquifer will also change. The results reflact that the stability, deformation, failure, permeability and groundwater hazardous condition of rock mass during deep mining process are quite different from that of shallow mining's.展开更多
Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Current...Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.展开更多
The effect of signal sampling depth in SIMS on profile was not reported We have found that the maximum sampling depth in SIMS is considerably bigger than the mean penetration range of primary ions and can skew the pro...The effect of signal sampling depth in SIMS on profile was not reported We have found that the maximum sampling depth in SIMS is considerably bigger than the mean penetration range of primary ions and can skew the profile of secondary ion counts for implanted samples on the more deeper direction from the surface. The effect of maximum sampling depth is true not only for implanted samples but also for the samples in the middle of which there is an other impurity-rich layer. The action principle of signal sampling depth effect and the method of decreasing the error produced by the effect are discussed in this展开更多
The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especi...The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especially the active component of the pressure and horizontal particle velocity cross-spectrum, also called ho- rizontal complex cross acoustic intensity, when only two normal modes are trapped in the waveguide. Both the approximate theo- retic analysis and the numerical results show that the sign of the horizontal complex cross acoustic intensity active component is independent of the range when vertically deployed receiving dual sensors are placed in appropriate depths, the sum of which is equal to the waveguide effective depth, so it can be used to tell whether the sound source is near the surface or underwater; while the range rate is expected to be measured by utilizing the sign distribution characteristic of the reactive component. The further robustness analysis of the depth classification algorithm shows that the existence of shear waves in semi infinite basement and the change of acoustic velocity profiles have few effects on the application of this method, and the seabed attenuation will limit the detection range, but the algorithm still has a good robustness in the valid detection range.展开更多
The interaction between axially adjacent defects is more significant than that between circumferentially aligned defects.However,the existing failure pressure assessment methods cannot accurately predict the failure p...The interaction between axially adjacent defects is more significant than that between circumferentially aligned defects.However,the existing failure pressure assessment methods cannot accurately predict the failure pressure of axial adjacent defects.In the paper,the finite element model is adopted to analyze the influence of defect size,distribution mode and spacing between adjacent defects on failure pressure.A new failure pressure evaluation method is proposed by establishing the effective depth calculation model of corrosion colony with different distribution model.The burst test of X52 pipeline is carried out to verify the applicability of the method.It shows that the results of new method are consistent with the test results of pipeline with various defects and steel grades.展开更多
The time-dependent behaviors of coal and rocks were easily ignored. Besides, “three-stage” triaxial loading and unloading mechanics tests of sandstone were conducted based on the idea of the initial high in-situ str...The time-dependent behaviors of coal and rocks were easily ignored. Besides, “three-stage” triaxial loading and unloading mechanics tests of sandstone were conducted based on the idea of the initial high in-situ stress state recovery according to the full-life cycle evolution characteristics of surrounding rocks in deep mines(pre-excavation,excavation and post-excavation). The time-dependent stress-strain curves of sandstone were obtained. Meanwhile, the deformation and strength fitting relationships with time of sandstone were also built. Furthermore, the dilatancy and volumetric recovery mechanical mechanisms of sandstone were revealed. The results showed that: 1) There were significant time-dependent evolution characteristics on the deformation and strength of sandstone;2) There were significant correlations among the internal friction angle, cohesion and the simulated depths;3) Volumetric recovery phenomenon of sandstone was observed for the first time, which mainly occurred at the simulated depth of 2000 m. The above research conclusions could provide a certain theoretical basis for the stability control of surrounding rocks in deep mines.展开更多
A field experiment using PVC growth tubes was conducted in the Loess Plateau of China to determine the effective root depth(ERD)of winter wheat and its relationship with root distributions and soil water conditions.Th...A field experiment using PVC growth tubes was conducted in the Loess Plateau of China to determine the effective root depth(ERD)of winter wheat and its relationship with root distributions and soil water conditions.The water stable isotopes technique was used to estimate the water uptake contributions of different root depths during the growth stages.On the basis of IsoSource and the Romero-Saltos model,the ERD was 0-40 cm in the majority of the growth stage.However,in the heading and filling stages,the ERD could reach 60%-75%of the maximum root depth.Furthermore,the contributions to water uptake of different root depths were correlated with variations in soil water and root length density(r=0.395 and 0.368,respectively;p<0.05).However,by path analysis,the low decisive coefficient indicated that root distribution and soil water content did not always follow the same trend as water uptake.The conclusions of this study can help with understanding winter wheat water uptake mechanisms in arid and semi-arid regions and increasing water use efficiency.展开更多
Based on the spherical cavity expansion theory in the elastic half space,the ground surface movement characteristics of shallowly buried explosions are analyzed.The results show that the induced seismic wave is a long...Based on the spherical cavity expansion theory in the elastic half space,the ground surface movement characteristics of shallowly buried explosions are analyzed.The results show that the induced seismic wave is a longitudinal wave in the near zone and a Rayleigh wave in the far zone.The maximum displacement(velocity) of the longitudinal wave and the Rayleigh wave are inversely proportional to the scaled distance,and can be described by exponential function with exponents equal to 1.4 and 0.5,respectively.The vibration frequencies of the waves have almost no change.The vibration frequency of the longitudinal wave approximates the natural vibration frequency of the cavity in the broken area,and the vibration frequency of the Rayleigh wave is about half that of the longitudinal wave.On the same reduced buried depth and reduced distance,the particle displacement is directly proportional to the product of the boundary loading and cavity radius,and is inversely proportional to the transversal wave velocity.Meanwhile,the particle velocity is directly proportional to the boundary loading and inversely proportional to the wave velocity ratio.In the far zone,the buried depth of the explosive only has a slight effect on the longitudinal wave,but has a larger effect on the Rayleigh wave.展开更多
Combined with irregular wave-maker, the growing process of Wave Energy Spectrum in shallow water can be studied in wind wave channel on different water depth conditions, and its transformation characteristics and rule...Combined with irregular wave-maker, the growing process of Wave Energy Spectrum in shallow water can be studied in wind wave channel on different water depth conditions, and its transformation characteristics and rules can be obtained.展开更多
We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths...We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths of contents for display purposes in 3DTV,object detection,or scene understanding.To展开更多
The negative effect of soil erosion and soil compaction is well documented for the purpose of optimum rangeland functioning, while the impact of rangeland degradation on effective soil depth is seldom quantified. The ...The negative effect of soil erosion and soil compaction is well documented for the purpose of optimum rangeland functioning, while the impact of rangeland degradation on effective soil depth is seldom quantified. The aim of this study was to quantify the response of vegetation cover and soil properties, particularly effective soil depth and soil texture to rangeland degradation. Forty-one farms were sampled in the arid and semi-arid climate of South Africa. Within these farms, data was collected over a vegetation degradation gradient. Results showed a significant decline in relative basal cover (94% ± 15% to 39% ± 17%) and soil depth (90% ± 14% to 73% ± 24%) as rangeland degraded. Soil texture changes over the degradation gradients vary for different homogeneous vegetation types. Indications regarding the loss of a functioning rangeland ecosystem were also demonstrated, using objective long-term relations between rangeland conditions and grazing capacity. The study highlights the importance of sustainable rangeland management practices to reduce the loss in effective soil depth and to ensure the sustainable utilization of the rangeland ecosystem. These results can probably extrapolate to other arid and semi-arid rangelands worldwide.展开更多
High temperature carburization is becoming more and more attractive because it can remarkably reduce processing time and increase productivity. However, the commonly used gear steels which are microalloyed by Al are n...High temperature carburization is becoming more and more attractive because it can remarkably reduce processing time and increase productivity. However, the commonly used gear steels which are microalloyed by Al are not suitable for high temperature carburization due to abnormal grain coarsening. The gear steel 20CrMnTiNb, which is microalloyed with 0. 048% Nb and 0. 038% Ti, has been compared with the gear steel 20CrMn in terms of microstructure in the case of hardened layer and in the core after carburizing at 1000 ℃ for 4 h and mechanical prop- erties after carburizing and pseudo-carburizing. The results indicate that the fine austenite grains exist in the carbu- rized case of 20CrMnTiNb steel, while there is abnormal coarsening and duplex grain structure in the case and core of steel 20CrMn. The average prior austenite grain sizes are 19.5 and 34.2 μm for the steels 20CrMnTiNb and 20CrMn, respectively. In addition, the mechanical properties of 20CrMnTiNb steel are superior to those of 20CrMn steel. In particular, the HV hardness of the former is higher than that of the latter by about 40--70 in the range of less than 0. 7 mm in depth. Therefore, the steel 20CrMnTiNb is suitable for high temperature carburization.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2009371)the National High Technology Research and Development Program of China ("863" Program) (2008AA02Z438)~~
文摘The effective detection depth of the needle-like optical probe is studied. The light transport model in highly scattering tissue is the diffusion equation and the boundary is Neuman. The sensitivity matrix is related to the position of the light source and the detector. It can be used to evaluate the effective detection depth. The sensitivity matrix is defined as the multiplication of the source and detector hght distribution. Six different groups about ix parameters including the source diameter and detector fibers, the core-to-core distance between the source and detector fibers, the opotode depth, the absorption, and reduced scattering coefficient, are used as experimental models. The relationship between the six parameters and the effective detection depth is analyzed. Resuits can be used to study the spatial resolution and the depth of multi-fibers.
文摘In this paper, the approximate equation of Chapman's (real) effective depth for Pekeris guide is extended to the complex effective depth approximation whose real and imaginary parts explicate respectively the phase change and energy loss on reflection. It is shown that the homogeneous acoustic field, which comprises the complex effective depth approximation,closely reproduces the character of low modes at small grazing angles, and calculates effectively the acoustic field at longer ranges in shallow water. Application of the complex effective depth approximation can be extended to bottoms having two soft solid layers.
基金supported by the Science and Technology Foundation of State Key Laboratory,China(9140C200103120C2001)the National Nature Science Foundation of China(11234002)
文摘A coupled-mode sound propagation model with complex effective depth is presented,in order to involve the effect of branch line integral for acoustic field in a range-dependent waveguide.The equations of motion and continuity are used to obtain the coupled equations,which satisfy boundary conditions in the waveguide with varying topography and contain one coupling matrix.Meanwhile,the couplings between discrete and continuous spectrum are dealt with based on complex effective depth theory.Numerical simulations show that the accuracy of transmission loss is improved by the coupled mode model when eigenvalues of trapped modes are located near the branch point.The acoustic field in a non-horizontally stratified waveguide can be calculated efficiently and accurately by this model,and the energy corresponding to trapped modes,leaky modes and branch line integral can be considered adequately.
基金supported by Public Science and Technology Research Funds Projects of Ocean(201405036-4)the National Natural Science Foundation of China(Grant Nos.11404406,51179034,41072176 and 11204109)+1 种基金Defense Technology Research(JSJC2013604C012)Postdoctoral Science Foundation of China(Grant No.2013 M531015)
文摘In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is adopted to distinguish the surface vessel and the underwater target. According to the effective depth of a Pekeris waveguide, the placing depth forecasting equations of passive vertical double vector hydrophones are proposed. Numerical examples show that when the sum of depths of two hydro- phones is the effective depth, the sign distribution of ACCSPPHV has nothing to do with horizontal distance; in addition, the sum of the first critical surface and the second critical surface is equal to the effective depth. By setting the first critical surface less than the difference between the effective water depth and the actual water depth, that is, the second critical surface is greater than the actual depth, the three positive and negative regions of the whole ocean volume are equivalent to two positive and negative regions and therefore the depth classification of the underwater target is obtained. Besides, when the 20 m water depth is taken as the first critical surface in the simulation of underwater targets (40 Hz, 50 Hz, and 60 Hz respectively), the effectiveness of the algorithm and the cor- reemess of relevant conclusions are verified, and the analysis of the corresponding forecasting performance is conducted.
文摘Significant changes of geological and hydraulic behaviors of rock mass with depth was studied. The general regulation and the critical depth of qualitative change of rock mass geological and hydraulic changes with depth were studied. Preliminary research show that the mechanical properties of rock mass gradually change from solid to plastic with the increasing of its buried depth. The critical depth of this tendency was controlled by geological properties of rock mass and its overlying rock. The critical depths are different in different regions because of its different geological condition. The general change depth of rock mass from rigid property to plastic property in coal mine regions of North China is about 1 800-2 300 m. The hydraulic permeability of rock mass will change significantly with depth because of the geological and hydraulic mechanics changes from solid to plastic and the groundwater circulation condition in karst and fractured aquifer will also change. The results reflact that the stability, deformation, failure, permeability and groundwater hazardous condition of rock mass during deep mining process are quite different from that of shallow mining's.
基金The Specialized Research Fund for the Doctoral Program of Higher Education under contract No.20120041130002the National Key Project of Science and Technology under contract No.2011ZX 05056-001-02the Fundamental Research Funds for the Central Universities under contract No.DUT14ZD220
文摘Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.
基金This work is supported by National Natural Science Fundation.
文摘The effect of signal sampling depth in SIMS on profile was not reported We have found that the maximum sampling depth in SIMS is considerably bigger than the mean penetration range of primary ions and can skew the profile of secondary ion counts for implanted samples on the more deeper direction from the surface. The effect of maximum sampling depth is true not only for implanted samples but also for the samples in the middle of which there is an other impurity-rich layer. The action principle of signal sampling depth effect and the method of decreasing the error produced by the effect are discussed in this
基金supported by the National Natural Science Foundation of China(1140440611374072)
文摘The pressure and horizontal particle velocity combined descriptions in the very low frequency acoustic field of shallow wa- ter integrated with the concept of effective depth of Pekeris wave- guide is proposed, especially the active component of the pressure and horizontal particle velocity cross-spectrum, also called ho- rizontal complex cross acoustic intensity, when only two normal modes are trapped in the waveguide. Both the approximate theo- retic analysis and the numerical results show that the sign of the horizontal complex cross acoustic intensity active component is independent of the range when vertically deployed receiving dual sensors are placed in appropriate depths, the sum of which is equal to the waveguide effective depth, so it can be used to tell whether the sound source is near the surface or underwater; while the range rate is expected to be measured by utilizing the sign distribution characteristic of the reactive component. The further robustness analysis of the depth classification algorithm shows that the existence of shear waves in semi infinite basement and the change of acoustic velocity profiles have few effects on the application of this method, and the seabed attenuation will limit the detection range, but the algorithm still has a good robustness in the valid detection range.
基金supported by the Key Scientific Research Projects of Colleges and Universities in Henan Province(Grant No.23A560013)the National Key R&D Program of the“14th Five-Year Plan”(Grant No.2022YFC3801001)+1 种基金Henan Provincial Youth Science Foundation(Grant No.232300421328)the Leading Talents in Zhongyuan Technology Innovation(Grant No.234200510014).
文摘The interaction between axially adjacent defects is more significant than that between circumferentially aligned defects.However,the existing failure pressure assessment methods cannot accurately predict the failure pressure of axial adjacent defects.In the paper,the finite element model is adopted to analyze the influence of defect size,distribution mode and spacing between adjacent defects on failure pressure.A new failure pressure evaluation method is proposed by establishing the effective depth calculation model of corrosion colony with different distribution model.The burst test of X52 pipeline is carried out to verify the applicability of the method.It shows that the results of new method are consistent with the test results of pipeline with various defects and steel grades.
基金Projects(52034009, 51974319) supported by the National Natural Science Foundation of ChinaProject(2020JCB01) supported by the Yue Qi Distinguished Scholar Project of China。
文摘The time-dependent behaviors of coal and rocks were easily ignored. Besides, “three-stage” triaxial loading and unloading mechanics tests of sandstone were conducted based on the idea of the initial high in-situ stress state recovery according to the full-life cycle evolution characteristics of surrounding rocks in deep mines(pre-excavation,excavation and post-excavation). The time-dependent stress-strain curves of sandstone were obtained. Meanwhile, the deformation and strength fitting relationships with time of sandstone were also built. Furthermore, the dilatancy and volumetric recovery mechanical mechanisms of sandstone were revealed. The results showed that: 1) There were significant time-dependent evolution characteristics on the deformation and strength of sandstone;2) There were significant correlations among the internal friction angle, cohesion and the simulated depths;3) Volumetric recovery phenomenon of sandstone was observed for the first time, which mainly occurred at the simulated depth of 2000 m. The above research conclusions could provide a certain theoretical basis for the stability control of surrounding rocks in deep mines.
基金the National Natural Science Foundation of China(51579168)the Program for Science and Technology Development of Shanxi Province(20140311016-6)the Program for Graduate Student Education and Innovation of Shanxi Province(2016BY065).
文摘A field experiment using PVC growth tubes was conducted in the Loess Plateau of China to determine the effective root depth(ERD)of winter wheat and its relationship with root distributions and soil water conditions.The water stable isotopes technique was used to estimate the water uptake contributions of different root depths during the growth stages.On the basis of IsoSource and the Romero-Saltos model,the ERD was 0-40 cm in the majority of the growth stage.However,in the heading and filling stages,the ERD could reach 60%-75%of the maximum root depth.Furthermore,the contributions to water uptake of different root depths were correlated with variations in soil water and root length density(r=0.395 and 0.368,respectively;p<0.05).However,by path analysis,the low decisive coefficient indicated that root distribution and soil water content did not always follow the same trend as water uptake.The conclusions of this study can help with understanding winter wheat water uptake mechanisms in arid and semi-arid regions and increasing water use efficiency.
基金Science Fund for Creative Research Group of the National Natural Science Foundation of China under Grant No.51021001China Postdoctoral Science Foundation under Grant No.2013M541675National Natural Science Foundation of China under Grant No.51309233
文摘Based on the spherical cavity expansion theory in the elastic half space,the ground surface movement characteristics of shallowly buried explosions are analyzed.The results show that the induced seismic wave is a longitudinal wave in the near zone and a Rayleigh wave in the far zone.The maximum displacement(velocity) of the longitudinal wave and the Rayleigh wave are inversely proportional to the scaled distance,and can be described by exponential function with exponents equal to 1.4 and 0.5,respectively.The vibration frequencies of the waves have almost no change.The vibration frequency of the longitudinal wave approximates the natural vibration frequency of the cavity in the broken area,and the vibration frequency of the Rayleigh wave is about half that of the longitudinal wave.On the same reduced buried depth and reduced distance,the particle displacement is directly proportional to the product of the boundary loading and cavity radius,and is inversely proportional to the transversal wave velocity.Meanwhile,the particle velocity is directly proportional to the boundary loading and inversely proportional to the wave velocity ratio.In the far zone,the buried depth of the explosive only has a slight effect on the longitudinal wave,but has a larger effect on the Rayleigh wave.
文摘Combined with irregular wave-maker, the growing process of Wave Energy Spectrum in shallow water can be studied in wind wave channel on different water depth conditions, and its transformation characteristics and rules can be obtained.
基金supported by Key Project No. 61332015 of the National Natural Science Foundation of ChinaProject Nos.ZR2013FM302 and ZR2017MF057 of the Natural Science Found of Shandong
文摘We consider the extraction of accurate silhouettes of foreground objects in combined color image and depth map data.This is of relevance for applications such as altering the contents of a scene,or changing the depths of contents for display purposes in 3DTV,object detection,or scene understanding.To
文摘The negative effect of soil erosion and soil compaction is well documented for the purpose of optimum rangeland functioning, while the impact of rangeland degradation on effective soil depth is seldom quantified. The aim of this study was to quantify the response of vegetation cover and soil properties, particularly effective soil depth and soil texture to rangeland degradation. Forty-one farms were sampled in the arid and semi-arid climate of South Africa. Within these farms, data was collected over a vegetation degradation gradient. Results showed a significant decline in relative basal cover (94% ± 15% to 39% ± 17%) and soil depth (90% ± 14% to 73% ± 24%) as rangeland degraded. Soil texture changes over the degradation gradients vary for different homogeneous vegetation types. Indications regarding the loss of a functioning rangeland ecosystem were also demonstrated, using objective long-term relations between rangeland conditions and grazing capacity. The study highlights the importance of sustainable rangeland management practices to reduce the loss in effective soil depth and to ensure the sustainable utilization of the rangeland ecosystem. These results can probably extrapolate to other arid and semi-arid rangelands worldwide.
基金Item Sponsored by National High Technology Research and Development Program(863)of China(2006AA03Z526)
文摘High temperature carburization is becoming more and more attractive because it can remarkably reduce processing time and increase productivity. However, the commonly used gear steels which are microalloyed by Al are not suitable for high temperature carburization due to abnormal grain coarsening. The gear steel 20CrMnTiNb, which is microalloyed with 0. 048% Nb and 0. 038% Ti, has been compared with the gear steel 20CrMn in terms of microstructure in the case of hardened layer and in the core after carburizing at 1000 ℃ for 4 h and mechanical prop- erties after carburizing and pseudo-carburizing. The results indicate that the fine austenite grains exist in the carbu- rized case of 20CrMnTiNb steel, while there is abnormal coarsening and duplex grain structure in the case and core of steel 20CrMn. The average prior austenite grain sizes are 19.5 and 34.2 μm for the steels 20CrMnTiNb and 20CrMn, respectively. In addition, the mechanical properties of 20CrMnTiNb steel are superior to those of 20CrMn steel. In particular, the HV hardness of the former is higher than that of the latter by about 40--70 in the range of less than 0. 7 mm in depth. Therefore, the steel 20CrMnTiNb is suitable for high temperature carburization.