期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of residual interface stress on effective thermal expansion coefficient of particle-filled thermoelastic nanocomposite
1
作者 黄汝超 陈永强 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第11期1377-1388,共12页
The surface/interface energy theory based on three configurations proposed by Huang et al. is used to study the effective properties of thermoelastic nanocomposites. The particular emphasis is placed on the discussion... The surface/interface energy theory based on three configurations proposed by Huang et al. is used to study the effective properties of thermoelastic nanocomposites. The particular emphasis is placed on the discussion of the influence of the residual inter- face stress on the thermal expansion coefficient of a thermoelastic composite filled with nanoparticles. First, the thermo-elastic interface constitutive relations expressed in terms of the first Piola-Kirchhoff interface stress and the Lagrangian description of the gen- eralized Young-Laplace equation are presented. Second, the Hashin's composite sphere assemblage (CSA) is taken as the representative volume element (RVE), and the residual elastic field induced by the residual interface stress in this CSA at reference configuration is determined. Elastic deformations in the CSA from the reference configuration to the current configuration are calculated. Prom the above calculations, analytical expressions of the effective bulk modulus and the effective thermal expansion coefficient of thermoelastic composite are derived. It is shown that the residual interface stress has a significant effect on the thermal expansion properties of thermoelastic nanocomposites. 展开更多
关键词 NANOCOMPOSITE thermal elastoplastic effective thermal expansion residualinterface stress SIZE-DEPENDENT
下载PDF
Size effect of Si particles on the electrochemical performances of Si/C composite anodes 被引量:2
2
作者 刘柏男 陆浩 +4 位作者 褚赓 罗飞 郑杰允 陈仕谋 李泓 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期598-604,共7页
A series of Si/C composites were fabricated based on pitch and Si powders with particle sizes of 30, 100, 500, and 3000 nm. The size effects of the Si particles in the Si/C composites were investigated for lithium-ion... A series of Si/C composites were fabricated based on pitch and Si powders with particle sizes of 30, 100, 500, and 3000 nm. The size effects of the Si particles in the Si/C composites were investigated for lithium-ion battery anodes. The nanoscale Si and Si/C composites exhibited good capacity retentions. Scanning electron microscopy showed that exterior and interior cracks emerging owing to volume expansion as well as parasitic reactions with the electrolyte could well explain the performance failure. 展开更多
关键词 silicon-carbon composite solid-electrolyte interphase size effect anode volume expansion
下载PDF
Experimental investigation of hydrodynamics of liquid-solid mini-fluidized beds 被引量:5
3
作者 Can Tang Mingyan Liu Yanjun Li 《Particuology》 SCIE EI CAS CSCD 2016年第4期102-109,共8页
Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured ... Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured incipient]minimum fluidization liquid velocity (Umf) in the MFBs was 1.67 to 5.25 times higher than that calculated using the Ergun equation when the ratio of solid particle diameter to bed diameter varied from 0.017 to 0.091. The ratio of the Richardson-Zaki (R-Z) exponent obtained by fitting with experimental data to that calculated using the R-Z correlation varied from 0.92 to 0.55. A wider solid particle size distribution resulted in a smaller R-Z exponent. The influence of the solid particle material on Umf and R-Z exponent was negligible. 展开更多
关键词 Liquid-solid fluidization Mini-fluidized bed expansion bed Wall effect Particle size distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部