The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
Main quadrupole magnets are critical for the Circular Electron and Positron Collider(CEPC)and are specifically designed as dual aperture quadrupole(DAQ)magnets.However,the field crosstalk between the two apertures pre...Main quadrupole magnets are critical for the Circular Electron and Positron Collider(CEPC)and are specifically designed as dual aperture quadrupole(DAQ)magnets.However,the field crosstalk between the two apertures presents challenges.As the CEPC will work at four beam energies of Z,W,Higgs and ttbar mode,the DAQ magnets will operate at four field gradients spanning from 3.18 to 12.63 T/m.The first short quadrupole magnet prototype with the bore diameter of 76 mm and magnetic length of 1.0 m revealed the problems of large magnetic field harmonics and a magnetic center shift within the beam energy range.Accordingly,a compensation method was proposed in this work to solve the field crosstalk effect.By adjusting the gap height at the middle of the two apertures,the field harmonics and magnetic center shift are significantly reduced.After optimization,the short prototype was modified using a new scheme.The field simulations are validated from the magnetic measurement results.Further,the multipole field meets the requirements of the four beam energies.The detailed magnetic field optimization,field harmonics adjustment,and measurement results are presented herein.展开更多
电子设备机箱由于散热及外接其他设备等原因需要开有各种孔缝,从而导致其电磁屏蔽效能降低。采用时域有限差分(Finite Difference Time Domain,FDTD)算法仿真分析了不同开孔形状、开孔尺寸、开孔数量及开孔间距的孔缝对电子设备机箱屏...电子设备机箱由于散热及外接其他设备等原因需要开有各种孔缝,从而导致其电磁屏蔽效能降低。采用时域有限差分(Finite Difference Time Domain,FDTD)算法仿真分析了不同开孔形状、开孔尺寸、开孔数量及开孔间距的孔缝对电子设备机箱屏蔽效能的影响,为电子设备机箱提高屏蔽效能工程设计提供依据,同时也为散热结构设计提供电磁兼容方面的参考。展开更多
Target micromotion not only plays an important role in target recognition but also leads to esoteric characteristics in synthetic aperture radar (SAR) imaging. This paper finds out an interesting phenomenon, i.e. th...Target micromotion not only plays an important role in target recognition but also leads to esoteric characteristics in synthetic aperture radar (SAR) imaging. This paper finds out an interesting phenomenon, i.e. the angular extent effect, in micro-motion target images formulated by the polar format algorithm. A micromotion target takes on multiple pairs of paired echoes (PEs) around the true point, and each PE extends for an angle which is exactly equal to the angular extent of the synthetic aperture, regardless of the micromotion frequency. The effect is derived and interpreted by using the characteristics of Bessel functions. Then it is demonstrated by simulation experiments of a target with different micromotion frequencies. The revelation and interpretation of the effect is highly beneficial to micromotion-target SAR image understanding as wel as target recognition.展开更多
An increasing interest in the use of low frequency Synthetic Aperture Radar(SAR)systems,e.g.,L-and P-bands,makes the research of the ionospheric effects on SAR interferograms become urgent and significant.As the most ...An increasing interest in the use of low frequency Synthetic Aperture Radar(SAR)systems,e.g.,L-and P-bands,makes the research of the ionospheric effects on SAR interferograms become urgent and significant.As the most pronounced signature in interferograms,the ionosphere-induced azimuth streak was thoroughly investigated in this study through processing of the 19 L-band Advanced Land-Observing Satellite(ALOS)Phased Array type L-band Synthetic Aperture Radar(PALSAR)images over the Chongqing City,China.The investigations show that the visible ionosphere-induced stripe-shape azimuth shifts with the invariable direction of 26°E,113°N are observed in some interferometric pairs.Relating these anomalous azimuth shifts to the International GNSS Service(IGS)final ionospheric products shows that the detected ionosphere-contaminated SAR images display the relatively large ionospheric variation with time during SAR satellite travelled through the study area,indicating a somewhat correlation between them.After detecting the ionosphere-contaminated interferograms,we estimated the Ionospheric Phase Streak(IPS)based on an approximate linear relationship between IPS and azimuth shift,and then removed them from the original interferograms.The corrected results show that ionospheric phase patterns are largely removed from the ionosphere-contaminated interferograms.The investigation indicates that the direction of the IPS keeps approximately constant in space and time,which provides the potential chance to develop methods to correct the ionospheric effect.Furthermore,this study once more proves that the ionospheric effect on SAR interferogram can be detected,estimated and corrected from azimuth shifts.展开更多
The beam-beam effects in a hadron collider with an unprecedented energy scale were studied.These effects are strongly related to the attainable luminosity of the collider.Long-range interactions were identified as the...The beam-beam effects in a hadron collider with an unprecedented energy scale were studied.These effects are strongly related to the attainable luminosity of the collider.Long-range interactions were identified as the major factor limiting the dynamic aperture,which is strongly dependent on the crossing angle,β*,and bunch population.Different mitigation methods of the beam-beam effects were addressed,with a focus on the compensation of long-range interactions by electric curren wires.The CEPC-SPPC project is a two-stage large circular collider,with a first-stage circular electron-positron collider(CEPC)and a second-stage super proton-proton collider(SPPC).The design of the SPPC aims to achieve a center-of-mass energy of 75 TeV and peak luminosity of approximately 1×10^(35) cm^(-2)s^(-1).We studied the beam-beam effects in the SPPC and tested the effectiveness of the mitigation methods.We found that with compensation using electric current wires,the dynamic aperture is at an acceptable level.Moreover,considering the significant emittance damping in this future proton-proton collider the beam-beam effects and compensation are more complicated and are studied using long-term tracking.It was found that with a smaller emittance,the head-on interactions with a crossing angle become more prominent in reducing the beam stability,and combined head-on and long-range compensation is needed to improve the beam quality.When the reduction in population owing to burnoff was included,it was found that the coupling between the transverse and longitudinal planes at smaller emittance is the main driving source of the instabilities.Thus,crab cavities and emittance control are also necessary than just the compensation of the long-range interactions to improve the beam stability.This study serves as an example for studying the beam-beam effects in future proton-proton colliders.展开更多
A new approach was presented to eliminate the atmosphere-induced phase error utilizing only the single look complex(SLC) synthetic aperture radar(SAR) image set. This method exploited the space-invariance characterist...A new approach was presented to eliminate the atmosphere-induced phase error utilizing only the single look complex(SLC) synthetic aperture radar(SAR) image set. This method exploited the space-invariance characteristic of phase error components contained in image pixels and estimates the phase error using the weighted least-squares(WLS) filter. Actually, this sort of method can be classified as autofocus algorithm which was generally applied in airborne SAR 2-D imaging to compensate the phase error introduced by airplane's nonideal motion. Real data processing, which is relevant to Honda center and Angel stadium of Anaheim test-sites and acquired by Envisat-ASAR during the period from June 2004 to October 2007, was carried out to evaluate this WLS estimation algorithm. Experimental results show that the phase error estimated from WLS filter is very accurate and the focusing quality along NSR dimension is improved prominently via phase correction, which verifies the practicability of this new method.展开更多
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
文摘Main quadrupole magnets are critical for the Circular Electron and Positron Collider(CEPC)and are specifically designed as dual aperture quadrupole(DAQ)magnets.However,the field crosstalk between the two apertures presents challenges.As the CEPC will work at four beam energies of Z,W,Higgs and ttbar mode,the DAQ magnets will operate at four field gradients spanning from 3.18 to 12.63 T/m.The first short quadrupole magnet prototype with the bore diameter of 76 mm and magnetic length of 1.0 m revealed the problems of large magnetic field harmonics and a magnetic center shift within the beam energy range.Accordingly,a compensation method was proposed in this work to solve the field crosstalk effect.By adjusting the gap height at the middle of the two apertures,the field harmonics and magnetic center shift are significantly reduced.After optimization,the short prototype was modified using a new scheme.The field simulations are validated from the magnetic measurement results.Further,the multipole field meets the requirements of the four beam energies.The detailed magnetic field optimization,field harmonics adjustment,and measurement results are presented herein.
文摘电子设备机箱由于散热及外接其他设备等原因需要开有各种孔缝,从而导致其电磁屏蔽效能降低。采用时域有限差分(Finite Difference Time Domain,FDTD)算法仿真分析了不同开孔形状、开孔尺寸、开孔数量及开孔间距的孔缝对电子设备机箱屏蔽效能的影响,为电子设备机箱提高屏蔽效能工程设计提供依据,同时也为散热结构设计提供电磁兼容方面的参考。
基金supported by the National Natural Science Foundationof China(6130214861101182)
文摘Target micromotion not only plays an important role in target recognition but also leads to esoteric characteristics in synthetic aperture radar (SAR) imaging. This paper finds out an interesting phenomenon, i.e. the angular extent effect, in micro-motion target images formulated by the polar format algorithm. A micromotion target takes on multiple pairs of paired echoes (PEs) around the true point, and each PE extends for an angle which is exactly equal to the angular extent of the synthetic aperture, regardless of the micromotion frequency. The effect is derived and interpreted by using the characteristics of Bessel functions. Then it is demonstrated by simulation experiments of a target with different micromotion frequencies. The revelation and interpretation of the effect is highly beneficial to micromotion-target SAR image understanding as wel as target recognition.
基金Natural Science Foundation of China projects(Nos.42074040,41941019,41731066,41790445)National Key R&D Program of China(Nos.2020YFC1512001,2019YFC1509800)China Geological Survey Project(No.DD20190647)。
文摘An increasing interest in the use of low frequency Synthetic Aperture Radar(SAR)systems,e.g.,L-and P-bands,makes the research of the ionospheric effects on SAR interferograms become urgent and significant.As the most pronounced signature in interferograms,the ionosphere-induced azimuth streak was thoroughly investigated in this study through processing of the 19 L-band Advanced Land-Observing Satellite(ALOS)Phased Array type L-band Synthetic Aperture Radar(PALSAR)images over the Chongqing City,China.The investigations show that the visible ionosphere-induced stripe-shape azimuth shifts with the invariable direction of 26°E,113°N are observed in some interferometric pairs.Relating these anomalous azimuth shifts to the International GNSS Service(IGS)final ionospheric products shows that the detected ionosphere-contaminated SAR images display the relatively large ionospheric variation with time during SAR satellite travelled through the study area,indicating a somewhat correlation between them.After detecting the ionosphere-contaminated interferograms,we estimated the Ionospheric Phase Streak(IPS)based on an approximate linear relationship between IPS and azimuth shift,and then removed them from the original interferograms.The corrected results show that ionospheric phase patterns are largely removed from the ionosphere-contaminated interferograms.The investigation indicates that the direction of the IPS keeps approximately constant in space and time,which provides the potential chance to develop methods to correct the ionospheric effect.Furthermore,this study once more proves that the ionospheric effect on SAR interferogram can be detected,estimated and corrected from azimuth shifts.
基金supported by the National Natural Science Foundation of China (Nos. 11575214, 11527811, and 11805218)the Fermi Research Alliance+1 种基金LLCunder contract no. DE-AC02-07CH11359with the U.S. Department of Energy。
文摘The beam-beam effects in a hadron collider with an unprecedented energy scale were studied.These effects are strongly related to the attainable luminosity of the collider.Long-range interactions were identified as the major factor limiting the dynamic aperture,which is strongly dependent on the crossing angle,β*,and bunch population.Different mitigation methods of the beam-beam effects were addressed,with a focus on the compensation of long-range interactions by electric curren wires.The CEPC-SPPC project is a two-stage large circular collider,with a first-stage circular electron-positron collider(CEPC)and a second-stage super proton-proton collider(SPPC).The design of the SPPC aims to achieve a center-of-mass energy of 75 TeV and peak luminosity of approximately 1×10^(35) cm^(-2)s^(-1).We studied the beam-beam effects in the SPPC and tested the effectiveness of the mitigation methods.We found that with compensation using electric current wires,the dynamic aperture is at an acceptable level.Moreover,considering the significant emittance damping in this future proton-proton collider the beam-beam effects and compensation are more complicated and are studied using long-term tracking.It was found that with a smaller emittance,the head-on interactions with a crossing angle become more prominent in reducing the beam stability,and combined head-on and long-range compensation is needed to improve the beam quality.When the reduction in population owing to burnoff was included,it was found that the coupling between the transverse and longitudinal planes at smaller emittance is the main driving source of the instabilities.Thus,crab cavities and emittance control are also necessary than just the compensation of the long-range interactions to improve the beam stability.This study serves as an example for studying the beam-beam effects in future proton-proton colliders.
基金Projects(41271459)supported by the National Natural Science Foundation of China
文摘A new approach was presented to eliminate the atmosphere-induced phase error utilizing only the single look complex(SLC) synthetic aperture radar(SAR) image set. This method exploited the space-invariance characteristic of phase error components contained in image pixels and estimates the phase error using the weighted least-squares(WLS) filter. Actually, this sort of method can be classified as autofocus algorithm which was generally applied in airborne SAR 2-D imaging to compensate the phase error introduced by airplane's nonideal motion. Real data processing, which is relevant to Honda center and Angel stadium of Anaheim test-sites and acquired by Envisat-ASAR during the period from June 2004 to October 2007, was carried out to evaluate this WLS estimation algorithm. Experimental results show that the phase error estimated from WLS filter is very accurate and the focusing quality along NSR dimension is improved prominently via phase correction, which verifies the practicability of this new method.